
Simon Says Project Walkthrough

1. Setup

To start using the EV3 with Alexa we require

a. Configure the development environment, we will use Visual Studio Code
b. Install the ev3dev software

A detailed description of these steps can be found in the web site
https://www.hackster.io/alexagadgets/lego-mindstorms-voice-challenge-setup-17300f

2. Register an Alexa Gadget

Once that the setup process has been completed the next step is the registration of an
Alexa gadget, in our case the EV3. The registration can be made on the web site
https://developer.amazon.com/. More details can be found at
https://www.hackster.io/alexagadgets/lego-mindstorms-voice-challenge-mission-1-f31925.

3. Connect the EV3 to Alexa

The EV3 is added to the Alexa device as a Bluetooth device as is shown in
https://www.hackster.io/alexagadgets/lego-mindstorms-voice-challenge-mission-1-f31925.

4. Test the EV3 and Alexa connection

This step is used to verify the connection between Alexa and the EV3. In the test, the EV3
lights will change and it also will make a sound when Alexa detects the wake-up word. A
detailed description of these steps can be found at
https://www.hackster.io/alexagadgets/lego-mindstorms-voice-challenge-mission-1-f31925

5. Create Alexa Skill

The current project requires the creation of a new skill. Sign in to

developer.amazon.com.

Once that you are logged, go to Alexa console and create a new skill following the steps of
https://www.hackster.io/alexagadgets/lego-mindstorms-voice-challenge-mission-3-4ed812

a. Add a new intent to the skill and call it StartGameIntent.
b. Add sample utterances

a. new game

https://www.hackster.io/alexagadgets/lego-mindstorms-voice-challenge-setup-17300f
https://developer.amazon.com/
https://www.hackster.io/alexagadgets/lego-mindstorms-voice-challenge-mission-1-f31925
https://www.hackster.io/alexagadgets/lego-mindstorms-voice-challenge-mission-1-f31925
https://www.hackster.io/alexagadgets/lego-mindstorms-voice-challenge-mission-1-f31925
http://developer.amazon.com/
https://www.hackster.io/alexagadgets/lego-mindstorms-voice-challenge-mission-3-4ed812

b. start game
c. start

6. Alexa lambda function

The Alexa lambda code is based on the example
https://www.hackster.io/alexagadgets/lego-mindstorms-voice-challenge-mission-3-4ed812.

Add a new handler for the StartGameIntent and call it StartGameIntentHandler.

The StartGameIntentHandler function will generate a new sequence of colors, say the
colors through the Alexa device and send the sequence to the EV3.

var speakOutput = 'Simon says, press ';

var s= Util.generate_sequence(1);

var str= Util.sequence2colors(s);

speakOutput += str;

Util.putSessionAttribute(handlerInput, 'color', str);

var mainTxt= 'Record '+ gameRecord + '
Score: ' + score + '
Level: '

+ level;

Util.putAPLmessage(handlerInput, 'Simon Says', mainTxt, 'To start a new game

 just say start game');

// Construct directive with the payload containing the sequence parameters

const directive1 = EV3.build(attributes.endpointId, NAMESPACE, NAME_CONTROL,

 {

 type: 'init',

 sequence: s

 });

return handlerInput.responseBuilder

 .speak(speakOutput)

 .addDirective(directive1)

 .getResponse();

In the EV3 the Alexa directives will be handled with the following function

 def on_custom_mindstorms_gadget_control(self, directive):

 """

https://www.hackster.io/alexagadgets/lego-mindstorms-voice-challenge-mission-3-4ed812

 Handles the Custom.Mindstorms.Gadget control directive.

 :param directive: the custom directive with the matching namespace a

nd name

 """

 try:

 payload = json.loads(directive.payload.decode("utf-8"))

 print("Control payload: {}".format(payload), file=sys.stderr)

 control_type = payload["type"]

 print('control type: ',control_type)

 if control_type == "init":

 print('***')

 self.sequence= payload["sequence"]

 print('New sequence received: ', end =" ")

 print(self.sequence)

 c= self.colores_secuencia(self.sequence)

 self.playing= True

As we can observe in the previous function the sequence of colors is received as a
payload of the Alexa directive. Once that the sequence was received the function
set the variable self.playing to true. This variable will activate the thread that reads
the touch sensors as it can be seen in the following code.

 while True:

 while self.playing:

 c=-1

 #detect push

 while c == -1:

 c= self.color_sensor()

 sleep(0.01)

 t= self.color2sound(c)

 self.sound.play_tone(t, 0.1, play_type=1)

 #detect release

 c2=0

 while c2 != -1:

 c2= self.color_sensor()

 sleep(0.01)

 if self.sequence[i] != c:

 print('lose ')

 self.playing= False

 self._send_event(EventName.GAME, {'win': 0})

 i=-1

 elif i== len(self.sequence) -1:

 print('correct!!!')

 self.playing= False

 self._send_event(EventName.GAME, {'win': 1})

 i=-1

 i= i+1

 time.sleep(1)

As we can observe the code will check if the touch sensors were press as the
sequence sent by the Alexa device. The function sends a 0 or 1 to the Alexa skill,
when the sequence is incorrect or correct respectively.

The answer sent by the EV3 is received in the Alexa skill handler
EventsReceivedRequestHandler. The handler checks the payload of the event, in
our case “win”. If this value is 1 we assume that the sequence provided by the user
is correct then the score is increased, and we continue with the game. If the
answer is 0 then the user sequence is incorrect and the game is over, and we
inform the user his score.

Once the game is over the user will be asked if he wants to start a new game, if
that is the case then the startIntent is called again and the process starts again.

The game record is saved using a S3 persistence storage. For more information
about persistence please consult https://developer.amazon.com/en-US/docs/alexa/custom-
skills/manage-skill-session-and-session-attributes.html#save-data-between-sessions

https://developer.amazon.com/en-US/docs/alexa/custom-skills/manage-skill-session-and-session-attributes.html#save-data-between-sessions
https://developer.amazon.com/en-US/docs/alexa/custom-skills/manage-skill-session-and-session-attributes.html#save-data-between-sessions

7. Build instructions

To build this project we require four touch sensors and the Lego components shown in the
following image:

The steps are the following

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Connections

The green button is connected to port 1.
The red button is connected to port 2.
The yellow button is connected to port 3.
The blue button is connected to port 4.

