

OBJECTIVE: This experiment will demonstrate how the Snapduino can control an analog motor using an PNP transistor.

Parts List

Quantity	ID	Name	Part #
1		Base Grid Base Grid (11" x 7.7")	6SCBG
2	1	1-snap wire	6SC01
2	2	2-snap wire	6SC02
1	UA	Snapduino	
1		Snap-FTDI Cable	
1	R1	100 Ω Resistor	6SCR1
1	D3	Diode 1N4001	6SCD3
1	S1	Slide Switch	6SCS1
1	M1	Motor	6SCM1
1	Q1	PNP Transistor	6SCQ1
1	B1	Battery Holder	6SCB1
1		Jumper Wire (Black)	6SCJ1

Step by Step Guide

- 1) Place the upper-left corner of the Snapduino at C1.
- 2) Snap component Q1 between position D5, C6 and E6.
- 3) Snap a 1-snap wire on the component at **F6**.
- 4) Snap a 1-snap wire on the component at **F8**.
- 5) Snap component **D3** between position **F6** and **F8**.
- 6) Snap component **B1** between position **C8** and **E8**.
- 7) Snap component **R1** over the components between position **D3** and **D5**.
- 8) Snap component **M1** over the components between position **E6** and **E8**.
- 9) Snap component **S1** over the components between position **C6** and **C8**.
- 10) Snap a 2-snap wire over the components between **E6** and **E6**.
- 11) Snap a 2-snap wire over the components between E8 and E8.

- 12) Connect the black jumper wire over the components between **E1** and **E8**.
- 13) Connect the **black** lead of the FTDI cable to the **GND** snap marked with a black ring on the Snapduino (*snap it over the top of any components that may already be connected to this snap*).
- 14) Connect the **green** lead of the FTDI cable to the **Reset** snap marked with a green ring on the Snapduino (*snap it over the top of any components that may already be connected to this snap*).
- 15) Connect the **yellow** lead of the FTDI cable to the **PBO** snap marked with a yellow ring on the Snapduino (*snap it over the top of any components that may already be connected to this snap*).
- 16) Connect the **white** lead of the FTDI cable to the **PB1** snap marked with a white ring on the Snapduino (*snap it over the top of any components that may already be connected to this snap*).
- 17) Connect the **red** lead of the FTDI cable to the **5V** snap marked with a red ring on the Snapduino (*snap it over the top of any components that may already be connected to this snap*).
- 18) Open the sketch for this project in the Arduino IDE and upload it to the board.
- 19) Place two fresh AA batteries into the battery holder.
- 20) When the upload has completed, Place the switch **S1** in the <u>ON</u> position.
- 21) The motor will run for 3 seconds and then stop for 3 seconds. This will repeat while the Snapduino is powered and the switch **S1** is in the ON position.

nap Circuits io ittps://www.had	T ckster.io/snapcircuits			

Snapduino PNP Motor by Daniel Porrey