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ABSTRACT
“People want an authority to tell them how to value things.
But they chose this authority not based on facts or results.
They chose it because it seems authoritative and familiar.”
- The Big Short [1]

The pavement condition index is one such a familiar mea-
sure used by many US cities to measure street quality and
justify billions of dollars spent every year on street repair [2].
These billion-dollar decisions are based on evaluation crite-
ria that are subjective and not representative. In this paper,
we build upon our initial submission to D4GX 2015[10] that
approaches this problem of information asymmetry in mu-
nicipal decision-making.

We describe a process to identify street-defects using com-
puter vision techniques on data collected using the Street
Quality Identification Device (SQUID). A User Interface to
host a large quantity of image data towards digitizing the
street inspection process and enabling actionable intelligence
for a core public service is also described. This approach of
combining device, data and decision-making around street
repair enables cities make targeted decisions about street re-
pair and could lead to an anticipatory response which can
result in significant cost savings. Lastly, we share lessons
learnt from the deployment of SQUID in the city of Syra-
cuse, NY.

1. INTRODUCTION
Pavement condition index or PCI is a measure of pavement
distress on a scale of 0 to 100, calculated from visual as-
sessment on a sample of road networks [3]. The standard
was originally developed in the 1970s by U.S. Army Corps
of Engineers. The PCI relies on city employees manually
surveying city streets using a prescriptive manual that con-
tains a visual reference of various pavement distresses and
street defects. These employees often undergo some training
prior to surveying city streets. We argue that regardless of
training or expertise, these visual measurements are subject
to inconsistencies and error. Furthermore, the PCI is often
conducted on a sampling of city streets and not the entire
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street grid. To that end any repair or maintenance interven-
tion premised on these measurements is not representative
and not equitable.

An alternative to the PCI is the International Roughness
Index (IRI) involves using laser technology to assess streets
at a very high precision. Unfortunately, for most US cities,
IRI is not a viable option for citywide street quality mea-
surement due to its high cost [2]. Many US Cities are being
challenged to think boldly about their transportation sys-
tem and prepare for a driverless future [4]. We believe that
the same form of bold thinking should apply to the main-
tenance, repair and response of the core piece of municipal
infrastructure, roads.

There is a clear need for a low-cost process that enables
city agencies to measure the entire street grid using a data
gathering process that is verifiable, repeatable, and action-
able to allow for complete and longitudinal measurements of
street quality. This will not only allow cities to make more
targeted and efficient decisions about street resurfacing, but
also enables an anticipatory response paradigm which al-
lows cities to be more responsive and resource and capital
efficient around street infrastructure [5].

According to the American Association of State Highway
and Transportation Officials, “every $1 spent to keep a road
in good condition avoids $6-14 needed later to rebuild the
same road once it has deteriorated significantly.” [6]

Furthermore, the director of the Los Angeles’ Bureau of
Street Services echoes a similar concern “for every block I
do reconstruction, I could have done five to seven blocks of
resurfacing.”[7] The reason is that resurfacing usually entails
replacing or installing a new top layer of asphalt pavement,
whereas reconstruction “replaces over a foot of the roadway
below the street’s surface and usually includes reconstruc-
tion of the curbs and sidewalks as well.” [8] It is therefore
crucial for city governments to make proactive decisions to
prevent damaged streets from undergoing reconstruction by
resurfacing them in a timely manner.
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2. PROCESS OVERVIEW
Digitizing street inspection is not a novel idea by itself. A
review of digital techniques to street quality assessments is
presented in [10]. However, few attempts solve for scalabil-
ity. Our approach involves a “soup to nuts” development
cycle that consists of a low-cost device, passive data collec-
tion and cloud storage, to automated computer vision-based
road surface inspections and public-facing web-based inter-
active visualization tools. In [11], a similar technique using
computer vision and mobile devices is described. In this
paper, we build upon these advances in academia and the
private sector in delivering a holistic approach that can not
only benefit municipal managers but also address systemic
issues in citywide street maintenance.

In this section, we provide a brief overview of our product,
SQUID, from how we design, assemble and implement the
device to how the data gets collected, stored and cleaned in
a robust and RESTful manner.

2.1 Device
SQUID consists of a Raspberry Pi 2 B computer, a cam-
era, an accelerometer, and a GPS platform. It is a low-cost
device, but it is well-suited to digitizing street inspection
process. In terms of implementation, the device is mounted
to the back of a city vehicle with its camera facing down-
wards to the road. A more detailed description of the device
is offered in [10].

2.2 Data
2.2.1 Collection

SQUID collects imagery, location and “ride quality data”
from camera, GPS and accelerometer. The data collection
frequency is set at 1 Hz (1 image per second) and is done
passively. The only constraint is to maintain driving speed
to below 35 mph to capture a high quality image and stay
within local speed limits. In addition to imagery, location
and time, “ride quality data” collected at each second in-
cludes vehicle speed as well as acceleration in all directions
(x, y, z).

Ride Quality Score =
√

x2 + y2 + z2

where x,y & z are measures of acceleration.

2.2.2 Storage
After data collection, we release the data out of the device
as quickly as possible and avoid performing any complex
computation on the device itself. This allows us to lever-
age inexpensive data storage and elastic computing services
while keeping costs and complexity low on the device side.
To this end, we use a mobile hotspot to transmit the data we
collect in real time to the cloud. Alternatively, we can also
leverage strategically located secure municipal wireless in-
ternet to serve as an asynchronous uplink. SQUID uses the
Amazon S3 Service to store images and tabular data and
Amazon EC2 for post-processing before making the data
available for decision-making.

2.2.3 Cleaning
The data, once in the cloud, is cleaned to ensure integrity,
usability and integration with existing GIS files that the city

may have of its own street grid. In New York City for exam-
ple, we use the LION file which is a “single line representa-
tion of New York City streets containing address ranges and
other information” [12]. We also use Google Maps’ Roads
API [13] to ensure consistency of the location information.
The Snap to Roads [14] feature improves the accuracy of our
GPS traces and allows for a consistent location dataset.

3. STREET DEFECTS DETECTION USING
COMPUTER VISION

A conventional approach of digital street inspection involves
manually annotating individual street images. The approach
is not only subjective but also tedious and may introduce
other forms of error from mislabeling [15]. To that end,
we have developed a computer vision-based framework to
automate the detection of various street defects with the
purpose to introduce a structured, empirical approach to
digitize the current, subjective evaluation criteria of street
inspection.

3.1 Methodology
Support vector machines or SVM is a widely used technique
in supervised learning. Featuring a non-probabilistic binary
linear classifier, SVM is well-suited to classifying labeled
images in computer vision. Additionally, as an important
image processing technique, adaptive thresholding is exten-
sively applied to edge detection, which is extremely help-
ful to evaluating road textures. Our methodology combines
support vector machines and adaptive thresholding to detect
defects in each road image. We have been focusing on crack
detection in our efforts thus far. Our current prototype is
implemented in Python and leverages the OpenCV library
[16].

3.1.1 Cleaning and Normalization
Our analysis focuses on the section of road directly behind
the vehicle, named the region of interest or ROI; see the
left side of Figure 1. The intuition is threefold: one, this
region will not generally contain non-road elements, such
as sidewalk or other vehicles; two, road elements beyond
the upper edge of the ROI will be captured with too few
pixels to reliably analyze; and three, the region of the image
above the upper edge of the ROI will have been captured in
previous images as the vehicle travels down the road.

Figure 1: Road Texture Edginess versus Distance
from Camera.

The distance from the camera affects how road texture ap-
pears in the image. To evaluate this, we analyzed a number
of images of roads with even texture by convolving them
with the Sobel operator, which captures image gradients
(edges). We split images into a number of horizontal re-
gions, calculated the mean of the Sobel image in each re-



Figure 2: Defect detection result using SVM and adaptive thresholding.

gion, and plotted the value as a function of image (a proxy
for distance from the camera). We captured images at three
different vehicle speeds: 15mph, 20mph, and 25mph; see the
right side of Figure 1.

The mean intensity of the Sobel image decreases near the
bottom of the image due to motion blur; as expected, this
effect is more pronounced at higher vehicle speeds. The
mean intensity also decreases with increasing distance from
the camera—this is also expected, as higher distances from
the camera imply fewer pixels within the ROI.

We therefore normalize each Sobel image with respect to the
distance from the camera prior to its use in further process-
ing, in order to reduce the bias in analyzing road texture
edginess.

3.1.2 Man-made Features
An important consideration is to avoid misclassifying man-
made features, such as road markings or manhole covers, as
road defects. To this end, we detect these man-made fea-
tures explicitly and remove them from the ROI prior to look-
ing for defects. We detected white and yellow road markings
using simple color- based thresholds followed by morpholog-
ical operators.

A side benefit of this step is that the quality of road markings
can be evaluated. Clearly visible road markings are impor-
tant to improving street safety for motorists, bicyclists, and
pedestrians. Poor quality road markings significantly im-
pede the ability of self-driving cars to function [17]. Making
road-marking quality information easily visible and accessi-
ble to city administrators will enable stakeholders to direct
resources to where they are most needed (see Section 4).

3.1.3 Classification Using SVM and Adaptive Thresh-
olding

Our defect detector combines two individual classifiers: an
SVM trained on a manually-annotated subset, and an adap-
tive threshold pixel-level classifier.

The SVM classifier was trained on a manually-annotated
subset of images collected during our prototype deployment
in New York City. Example output of the SVM classifier
is shown on the left side of Figure 2. As the image shows,
the classifier performance is subpar, due largely to the rel-

atively small training dataset. Significant improvements in
the overall classification accuracy will be achieved with an
improved classifier in this step.

The other subclassifier uses an adaptive threshold. We se-
lect pixels that are much darker in the input image than
in the blurred image as defect candidates, since this often
corresponds to what defects look like in our images, shown
in the middle of Figure 2.

In the final step, we combine the outputs of the two classi-
fiers by keeping only regions flagged by the SVM that also
have a sufficient number of pixels flagged by the adaptive
thresholding. This results in better performance than either
of the individual classifiers.

3.2 Classifier Performance
Some results are shown in Figure 3. Our prototype detector
is fast, simple, and performs well in detecting road defects,
particularly considering the limited training dataset size. In
addition to improving the performance of the core defect
detector, our future work will recognize the defect type and
severity, evaluate the quality of road markings, and auto-
matically compute road quality metrics such as the PCI.
Other challenging areas include detecting man-made hard-
ware and working reliably in the presence of complicated
shadows such as those cast by trees.

4. USER INTERFACE TO DIGITIZE STREET
INSPECTIONS

While computer vision to automate the street inspection
process is the end goal of this work, we understand that
for this approach to succeed, human expertise is needed to
enhancing the efficacy of the defect identification model and
also ensures that the architecture can be reused for other
purposes such as identifying street assets (furniture, parking
signs etc.).

To this end, we have developed a user interface to represent
the large quantity of image data that is collected with the
intent towards actionable intelligence. In this instance, the
User Interface is designed to answer a simple question, “how
do we prioritize all the city’s streets for street repair?”

A cornerstone of this interface is to enable stakeholders to
engage in a fully virtual inspection process. This is a paradi-



Figure 3: Crack detection results with defect regions highlighted in red.

gm shift as current methods of street surveying involve send-
ing individual vehicles and inspectors to the location of the
street defect [18]. Enabling a virtual inspection process, we
argue would lead to immediate and significant cost-savings
as well as environmental benefits simply by getting inspec-
tors and vehicles off the roads and behind digital worksta-
tions. Customized training can be delivered to ensure that
these city employees who were previously engaged in analog
jobs are now retrained to perform digital tasks. To this end,
the SQUID approach also unlocks a workforce development
opportunity within this section of municipal service delivery.

4.1 Design

Figure 4: SQUID Annotator web dashboard.

Figure 4 is the main interface of our virtual street inspection
tool, implemented using Google Maps API and JavaScript.
The demo [19] is designed using data collected in Hoboken,
NJ. On the map, data points are displayed along each street
we have driven and color-encoded by ride quality score, an
index calculated by taking the vector magnitude of acceler-
ation in all three directions (x, y, z). The scores are divided

into three groups by value range: 50 and below are encoded
in green; 50 to 150 in yellow; and 150 and above in red. By
looking at the map, users are able to get a sense of how ride
quality score gets distributed at a block level throughout
the city. There are about 20 images collected per block, de-
pending on how much time it takes to drive through, usually
around 20 seconds.

4.2 Usability
The purpose of this User Interface is to make street inspec-
tions more efficient by digitizing the entire workflow. By
clicking on a data point on the map, the virtual street in-
spection process begins, allowing users to interact with the
UI. SQUID Annotator will display the image taken as well
as the detailed data collected at that very instant by our de-
vice. In addition to location and time, the data view inter-
face shows the average ride quality of the block as compared
to the ride quality of the data point selected, describing the
data point at a highly granular level.

Figure 5: SQUID Annotator data view interface.

By clicking on the “Annotate Image” button, users are able
to virtually inspect the street. The defect annotation inter-
face provides options for users to select the defect region in
the image. After selection, a menu pops up, allowing users
to not only record the type of defects but also add a com-



ment to if necessary. Once the annotation is done, a record
will be generated at the back end for further processing and
analysis.

Figure 6: SQUID Annotator defect annotation in-
terface.

The virtual inspection process is designed to be simple, us-
able and self-explanatory and over time will merge with the
computer vision technique to offer a rich, automated process
to digitize street inspection for an entire city.

5. DEPLOYING SQUID IN THE CITY OF
SYRACUSE

The innovation team at Syracuse, supported by Bloomberg
Philanthropies, invited ARGO Labs to prototype SQUID in
the city. Beginning on April 14th, 2016 through the 30th, the
SQUID device was mounted on 2 city vehicles and collected
110,000 readings and images covering an estimated 538 lin-
ear miles of streets. This equated to over half of Syracuse’s
entire street grid. Our main takeaways from this field ex-
periment included:

• Mobile hotspots have a limited capability to upload
data and are not suited for continuous image transmis-
sion. The preferred approach is to use an asynchronous
transmission link using Wifi.

• The absence of a structured route plan proved to be a
challenge. While the city’s department of public works
maintains routes in paper-format, a digital approach to
route planning would improve the process significantly.
Furthermore, the lack of a digital route plan caused in-
stances of “back-tracking” where the same street seg-
ment was surveyed repeatedly.

• SQUID was initially mounted on a large truck and then
moved to a smaller vehicle. The vibrations from the
larger truck introduced noise in our dataset and needed
to be normalized.

6. CONCLUSION AND FUTURE WORK
In 2015, Chicago’s Office of Inspector General made the fol-
lowing remarks about Chicago’s pavement program [20]:

“CDOT is at an auspicious juncture–the tipping point of a
paradigm shift from its traditional, reactionary, ‘worst-first’
approach to a comprehensive, proactive pavement manage-
ment strategy aligned with contemporary best practices that

realize the substantial financial benefits of timely, planned
preventive maintenance.”

We agree with this assessment from the 3rd largest U.S. city
and the way to get there is by digitizing municipal street
inspections and enabling a 21st century approach to a 20th

century problem. On one end, Silicon Valley and private
enterprise challenge local governments with visions of au-
tonomous transportation[21,22] while on the other end, the
country’s road infrastructure that is supposed to support
these lofty visions degrades by the day without a sustain-
able,digital maintenance strategy. Our approach adequately
demonstrates how municipalities can indeed be smart by
meaningfully combining technology with a mission to serve
the public and deliver core services efficiently, transparently,
and at scale.

SQUID’s future work involves several improvements to the
overall work flow around data collection, storage and even-
tual analysis. On the collection end, we have begun proto-
typing a light-weight mobile application that does not re-
quire a dedicated hardware solution. In this deployment,
a municipal employee may need only to mount the smart
phone to the rear of the vehicle with a clear view of the
street to enable scalable data collection.

Moreover, the base models of today’s smart phones are equipped
with all the necessary sensors and optical technology needed
to deliver a low-cost, high-quality digital street quality as-
sessment for the entire city.

To date we have collected approximately 300,000 images of
streets that forms our initial training data set. We are confi-
dent that with similar deployments such as in Syracuse, our
computer vision model to detect street defects and pavement
markings will only improve with time and these improve-
ments can be deployed to all participants.

A goal is to also afford a structured and longitudinal data
collection process on a single test site, over a longer period of
time. This would begin unlocking a preventative paradigm
for street maintenance that is truly unprecedented and could
lead to exponential improvements and cost-savings.

Finally, we are also working on an automated route-planning
service that will allow a municipal employee to create a pro-
grammatic driving plan so that the entire street grid can be
driven in a structured manner. This would enable us to de-
liver this technology to non-municipal, private fleets as well.
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