

TI LaunchPad™ Ecosystem: Modular and affordable microcontroller development tools for rapid prototyping

Electronics rapid prototyping with Tl's broad portfolio of MCUs, analog & connectivity solutions

Internet of Things Workshop

Texas Instruments
January 2018

Wi-Fi & BLE & Sub-1GHz

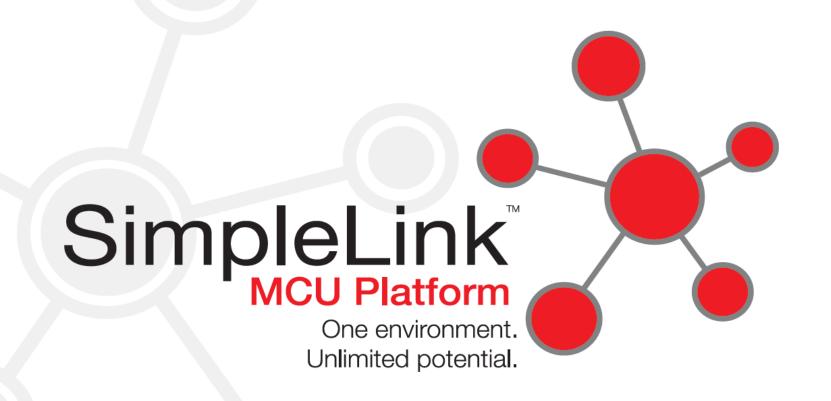
For the greatest crash course on IoT and electronics you've ever done?

Wi-Fi Workshop Materials

- MSP432 LaunchPad (MSP-EXP432P401R)
 - Alternative: MSP-EXP430FR5994, MSP-EXP430F5529LP, EK-TM4C123GXL
- CC3100 Wi-Fi BoosterPack (CC3100BOOST, CC3100MODBOOST)
- Educational BoosterPack MK II (BOOSTXL-EDUMKII)

MSP432P401R LaunchPad

Introducing the SimpleLink MSP432 processor for Low Power + Performance



Target MCU: MSP432P401R BoosterPack Pinout: 40-pin Specs:

- 48 MHz 32-bit ARM® Cortex™-M4F CPU
- 256 kB Flash / 64 kB RAM
- 14-bit 1MSPS SAR ADC, Timers, AES Accelerator, I2C, UART, SPI

Why this LaunchPad?

- EnergyTrace+ to measure system current
- Good performance balance & great for general purpose applications

TI SimpleLink™ MCU Platform

We're building a cohesive developer ecosystem around our **ARM®-based SimpleLink microcontrollers (MCUs) and Network Processors**, revolving around a single SDK & powerful tool suite enabled by TI & partners.

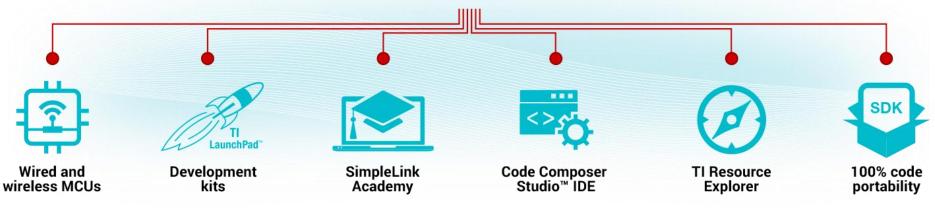
Scalable Ultra-Low Power MCU Portfolio of ARM-based MCUs & Network Processors.

Wireless solutions Wireless SoCs, Stacks & certified solutions available

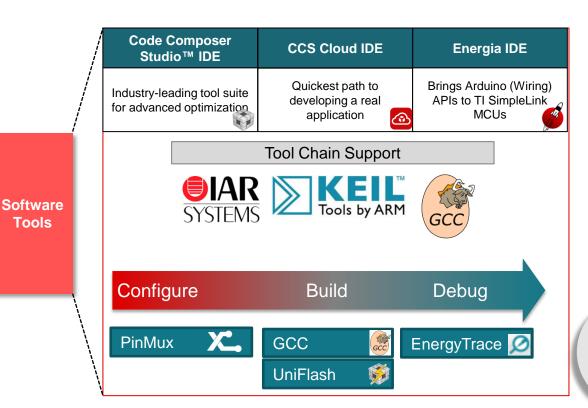
High precision analog integration Best-in-class 14-bit 1Msps ADC w/ultra-lowpower consumption

Comprehensive Tool Suite
TI & 3rd party IDEs, utilities &
code generation tools

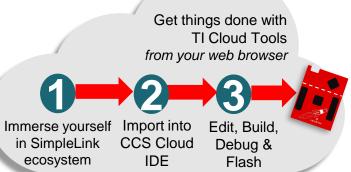
ONE SDK
Enabling 100% code
re-use & portability.



LaunchPad™ Kits Low cost, modular hardware dev kits.


Everything you need is one click away with TI Resource Explorer All of your development resources in one place.

SimpleLink MCU Platform



Unified experience to speed up customer time to market and manage IoT product life cycle

TI SimpleLink™ SDK Software Tools

- Multiple toolchain options to match your development needs
 - TI CCS, CCS Cloud, Energia
 - Local & Cloud-based access
 - Add'l toolchains supported:
 IAR, KEIL, GCC

Wi-Fi Workshop Pre-work

Lab- https://goo.gl/VbymuW

Boards Manager...

Energia MSP430 boards
MSP-EXP430F5529LP

MSP_FXP430ER41-23LP

Energia MSP432 (32-bits) Boards

LaunchPad w/ msp432 EMT (48MHz

We will break here and get started with the hardware!

- Download Energia from <u>www.energia.nu</u>
- 2. Unzip Energia to "install" it

3. Start Energia and select your LaunchPad "LaunchPad w/ msp432 EMT (48MHz)" from *Tools* menu.

Board: "LaunchPad w/ msp432 EMT (48MHz)"

4. If LaunchPad isn't available, then go to the board manager to install – Tools > Board > Board Manager...

Port

Programmer

Create your free accounts at: <u>my.ti.com</u> and <u>temboo.com</u>

Lab 1 CCS Cloud & MSP432 LaunchPad Out of Box

- 1. Open TI Resource Explorer Cloud from dev.ti.com Lab- https://goo.gl/VbymuW
- 2. Find the Out-of-Box Experience (OOBE) for MSP-EXP432P401R Rev 2.x (Red)
- Import OOBE into CCS Cloud (You will need to log into my.ti.com to access the IDE)

- 4. Build the OOBE project (using hammer icon) and then click on "Run" to download the program to the LaunchPad (see LED blink)
- 5. Click back over to the TI Resource Explorer window and select: Out-of-Box Experience GUI
- 6. Connect the GUI to the LaunchPad ("Connect" button)

Lab 2 Energia Introduction with Blink and the EduBP

We will break here and get started with the hardware!

https://goo.gl/VbymuW

Lab:

- Step 1: Install Energia IDE from www.energia.nu
 - Alternative use the CCS Cloud IDE from dev.ti.com
- Step 2: Install any OS specific drivers associated with your TI LaunchPad
- Step 3: Plug in your TI LaunchPad board with the included USB cable
- Step 4: Open Energia IDE and adjust your preferences as necessary
- Step 5: Open basic test example click File > Examples > Basics > Blink
- Step 6: Select your LaunchPad board or install board package click Tools > Board
 - If LaunchPad is not MSP430 then go to the board manager to install Tools > Board > Board Manager... and install your package from the menu. Select your specific LaunchPad from the list after installation.

Lab 2 Energia Introduction with Blink and the EduBP

- Step 7: Click the upload button and make sure your Red LED is blinking
 - If not or you get errors during compile, your system is not properly setup and you will not be able to proceed, so seek assistance from instructor or neighbors
 - If yes, then you can now test the Educational BoosterPack
- Step 8: Open EDUBP example mentioned in the lab details
- Step 9: Click the upload button. You can use the joystick and see results on the LCD. Test it out!
- Step 10: There are additional examples for the BoosterPack that you can try if you have extra time, however we will be moving on quickly. They are documented at www.energia.nu/edumkii
- Examples are located in the IDE, click File > Examples > EducationalBP MKII

The Internet of Things

a history

The Rise of Electronics

From large desktop computers to tiny battery powered devices, EVERY innovation is all part of the same technology revolution

1800s-1900s

Edison & Tesla

 It pretty much always starts with the lightbulb, harnessing electricity for human applications, took lots of famous people to get to this point

1900s-1960s

Tubes, Transistors & Radio

 Electric computation and communication becomes possible and mainstream with the creation of the basic building blocks

1958

The Integrated Circuit

Jack Kilby, a TI
 engineer, changed the
 world by inventing a
 practical way to shrink
 the size of electronics

Texas Instruments

The Internet of Things

a history

The Rise of Electronics

From large desktop computers to tiny battery powered devices, EVERY innovation is all part of the same technology revolution

1970s-1990s

The PC Age

 Personal computers change business and productivity in every aspect of life worldwide

1990s-2010s

The Internet Age (& Mobile)

 Computers and electronics can talk to each other creating a whole new world of applications

2000s-2030s

The IoT Age

 Affordable connectivity and processing gives all electronics additional capabilities for new data driven and world changing behavior

TEXAS INSTRUMENTS

The Internet of Things a history

This tech wave will have lasting effects on EVERY industry

Government Transportation Industrial Aviation

Aviation

Marufacturing Ty Energy Discription

Food Real Estate Finance Construction

TEXAS INSTRUMENTS

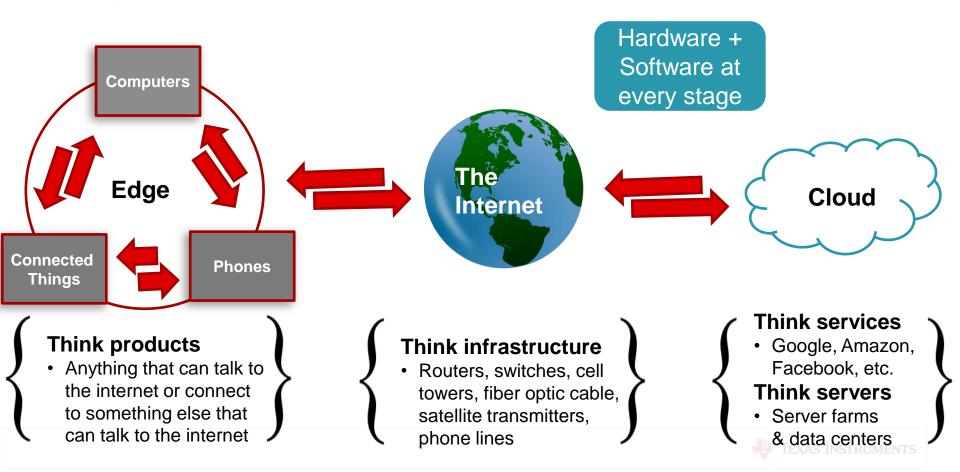
Join the IoT revolution!

See the World!

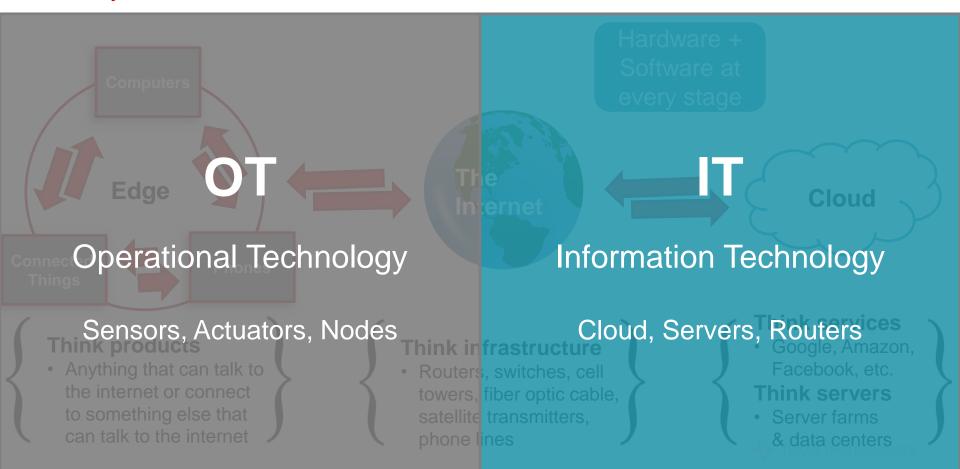
Build a new industry!

IoT will change your life!

Can you make the next Great Product or Service?


WE WANT YOU!

Calling all Engineers, Makers, Entrepreneurs


The Internet of Things a birds eye view

IoT Data passes from physical hardware layers to software layers back and forth, connecting the real and digital worlds

The Internet of Things a birds eye view

IoT Data passes from physical hardware layers to software layers back and forth, connecting the real and digital worlds

Edge Processing or Server Compute? a comparison

Edge Processing (Hot Data Path)

You are processing heavy bits of data on the IoT device before delivery of simple packets

Advantages

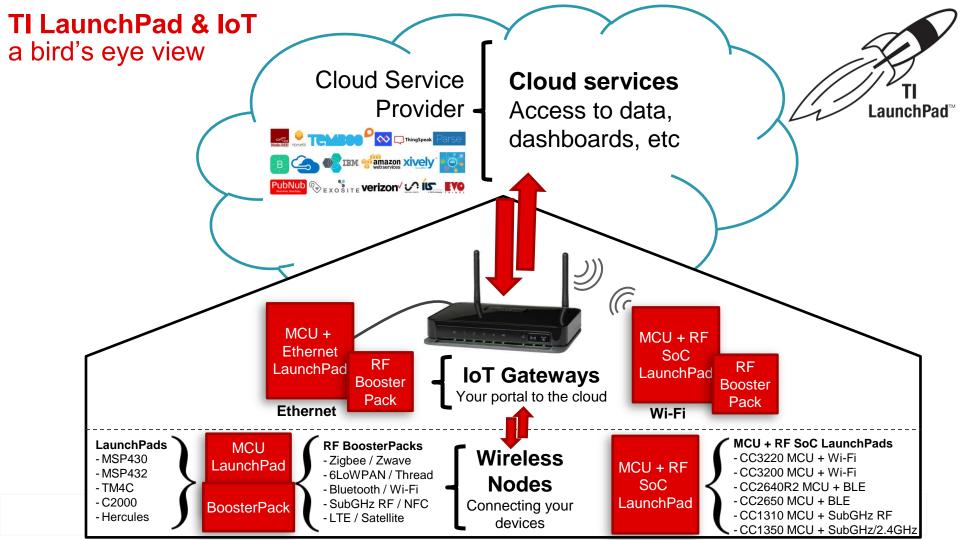
- Keeps your data transmission smaller (bandwidth constrained radio transmission or expensive data rates)
- Distributed, less prone to security threats

Disadvantages

- More programmed logic on device side
- Harder to update
- · Possibility of less uptime

Server Side Processing (Cold Data Path)

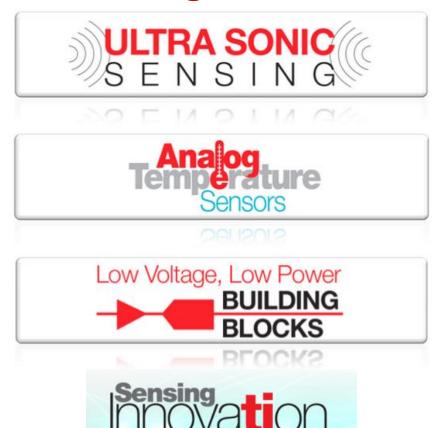
You are simply collecting and transmitting raw data or simplified converted data to the server for further processing


Advantages

- Common infrastructure and maintenance
- Take advantage of nearly unlimited compute power or magnitudes higher than an individual edge device
- Easy to update, low downtime

Disadvantages

- More frequent packets
- Database / data stream management
- Server downtime jeopardizes whole system



TI LaunchPad & BeagleBone Embedded System Design a bird's eye view Cloud **Embedded System** Power Management Communication Processing **RF Radio** Sensor / Wired Analog Comm MCU **Design Accessories** LaunchPad or MPU Plug-in modules BeagleBone **Display** Through hole (breadboard) **Power** circuits Oscilloscope & logic **LaunchPad™** analyzer & multimeter EDA / CAD tool (PCB and Motor Input / enclosure design) Control Output IDEs and SW Dev tools beagleboard.org

Breakthrough Sensor Technology

www.ti.com/sensing

Delivering better solutions today and new possibilities for tomorrow

Power: Line Power vs Disposable Battery vs Rechargeable Battery a comparison

What's the difference?

- Alkaline
- Li-Ion
- Li-Po or Li-Poly
- Lead Acid
- Nickel Metal Hydride
- Nickel Cadmium

Design Considerations

- Do I need continuous power?
- How convenient is it to recharge in the application?
- How mobile is the application?
- What is the form factor?
- What are the aesthetics and usability requirements?

Motors: Brushless vs Brushed vs Stepper

a comparison

Big portion of IoT is around intelligent movement

Make use of motor drivers and software libraries like TI MotorWare

What's the difference?

- Brushless
- Brushed
- Stepper
- AC / DC

Design Considerations

- Do I need accurate movement?
 (Stepper, encoders, hall effect sensors)
- Do I need high torque?
- Low complexity or high complexity control?
- Do I need high efficiency or long life?
- Do I need low cost?

Motors: Brushless vs Brushed vs Stepper

a comparison

Brushed DC

Brushless DC

Stepper

Advantages

- Cheapest and simplest motor
- Speed linear to applied voltage
- Simple Motor Control

Advantages

- High efficiency, long life
- Little to no maintenance
- High output power

Advantages

- Accurate position control
- Excellent low speed torque
- Long life

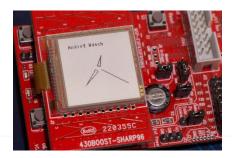
Disadvantages

- High maintenance
- Low life-span (due to physical wear on brushes)

Disadvantages

- More complicated motor control
- More expensive

Disadvantages


- Low efficiency
- Prone to noise, ripple, and resonance
- Cannot accelerate loads rapidly

Displays: LCD vs OLED vs LED vs ePaper

a comparison

What's the difference?

- LCD
- OLED
- LED Matrix
- LED Segment
- ePaper
- Cloud GUI, Web App, or Mobile App

Design Considerations

- · Do I need color graphics?
- Does it require high refresh? Video?
- Do I need to display digits or alphanumeric?
- Does it need to be low power or battery free? Backlight?
- How will it mount in the enclosure?

Make use of display drivers and software libraries like
TI Graphics Libraries

Easily add RF for wireless applications!

THREAD

Bluetooth®

Which wireless?

Tradeoffs between range, bandwidth, cost, power usage, adoption

Wide range

High bandwidth

- Ubiquitous
- High bandwidth
- Higher power usage

- Common
- Small range
- Lower power
- Very low cost
- Super near range
- Low bandwidth •
- Low power
- Low cost

- Limited to certain cities
- Wider range
- Low bandwidth Higher cost
- Expensive –Data & HW

THREAD COWPAN

Infrared

Satellite

Proprietary

- Mesh networking
- Low power
- Very low cost
- IPV6 Addressable
- Mesh networking
- Low power
- Very low cost
- Not IP addressable
- Line of Sight
- Low power
- Very low cost
- Global range w/ Sat available
- Expensive –
 Data & HW

Licensed and unlicensed spectrum with trade offs

Which wireless?

Tradeoffs between implementation effort

- Direct connect
- Access a wide variety of APIs directly
- Only requires domain expertise in internet and firmware
- High data rate
- Poor for mobile and rural use cases

Wi-Fi Primary Use Cases

- Smart Home
- Industrial/Commercial
- Fixed position connectivity
- Medical

BLE Primary Use Cases

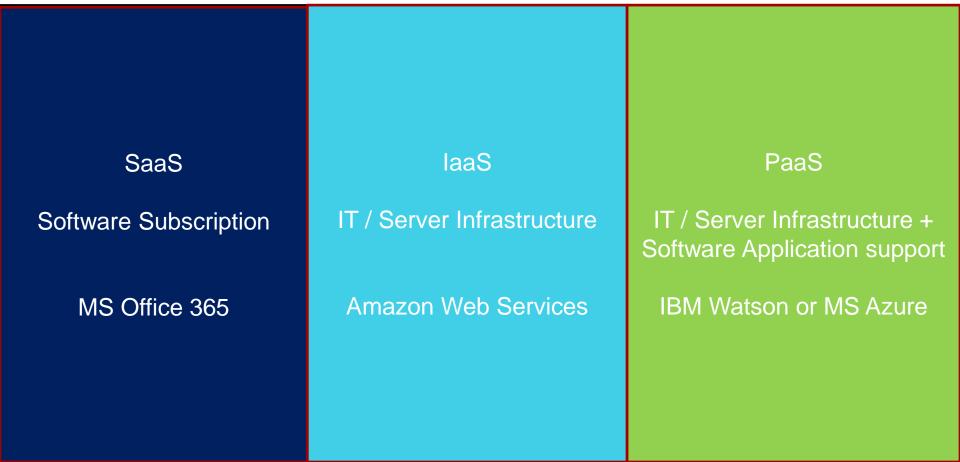
- Wearable
- Phone accessory
- Streaming music
- Smart Home
- Medical

- Requires a middleman gateway (Smartphone or embedded bridge)
- Everything is custom
- Need domain expertise in frontend and backend, UX, UI, firmware

- Low data rate
 Poor for crowded
- environment

TI LaunchPad and BeagleBone in the cloud

Cloud-connected TI Hardware is supported by various cloud partners & protocols via Wi-Fi, BLE, LTE, or Ethernet.



SaaS or laaS or PaaS a comparison

IoT Protocols a comparison

Data to Cloud has a cost!

Protocol has a lot to do with packet size, security, ease of use, capability, scalability Ethernet and Wi-Fi assumed data was "free" but mobile IoT now makes that not true

HTTP (Hypertext Transfer Protocol)

- Classic protocol that runs the traditional internet, request-response paradigm in client-server model
- Very heavy protocol with large packets and assuming that consuming large quantities of data is okay
- Highly reliable and easy to learn

MQTT (Message Queue Telemetry Transport)

- Bi-directional, Publish-Subscribe model
- Gaining more popularity for IoT as a lightweight alternative for HTTP
- Easy to learn but requires a Message Broker to be setup in your network or externally

AMQP (Advanced Message Queue Protocol)

- Emerging IoT protocol that addresses shortfalls of MQTT such as security and file transfers
- One to one (P2P) and one to many (Pub-Sub) communication

Software Effort: Custom vs. Packaged Build your own or use existing tools?

IoT Software needs

Web application, servers, mobile app, device firmware

Types of existing tools

Open source, SaaS, PaaS, laaS

DIY Advantages

- · Highly customized
- Easier to maintain & less dependencies

DIY Disadvantages

- Lots of work, dedicated resources
- wide range of expertise required

Buy Advantages

- Less development work
- Outside support

Disadvantages

- Dependencies on the tools or services
- Tool or service limitations

Does it feel responsive? Does it feel like magic?

Active Control

- Human physically interacts with machine or system
 - Buttons
 - Touch screen
 - Wired or wireless Controller
- ♦ Has to be responsive
 - Quick reactions to input
 - Graphical indicators
 - Light, sound, or haptic indicators

Passive Control

- Machine or system automatically performs tasks
 - Requires minimal Human input
 - Leverages real world sensors or incoming data to make decisions
- Leads to poor user experience if interaction model is broken
 - E.g. Automatic door doesn't open

Which philosophy is Amazon Echo? Xbox? Nest Thermostat?

Rapid Prototyping or Embedded Design?

What is the distinction?

- Prototyping makes use of pre-assembled, low cost hardware and open source software solutions to quickly build out product concepts.
 - Open source SW libraries, Arduino shields, breakout modules, dev kits, 3D printing
- You first prototype to prove your application, test use cases, secure budget, find investors, define the market in a quick and dirty form factor where time and cash investments are huge limitations.
 - Your prototype can be made pretty, but that doesn't make it a product!
- Embedded design will mostly scrap what you did in the prototyping stage to optimize for cost, scale, size, quality, manufacturability. Everything will be custom from HW to SW.
 - Don't fall in love with your prototype, because it won't be what you release to market!

System Level Thinking measure all design factors

Time has a cost!

Cannot look at your BOM as the only measure of cost. There is design time and there is system level cost that should be accounted for

BOM and Manufacturing Costs and Fees

Pure dollar amounts

Design time cost

 Bottle necks can be created depending on quality of evaluation tools, software experience, board layout complexity, testing, availability of reference design, vendor support

System level cost

- Do the parts work together efficiently as a system? System decisions might impact the customer experience (more battery life or reliability or flexibility)
- Is the supply chain strong? Poor inventory levels can result in huge costs

System Level Thinking measure all design factors

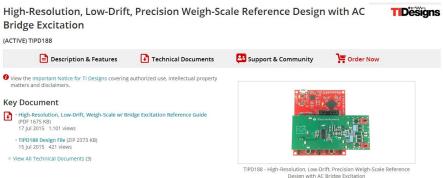
Time has a cost!

Cannot look at your BOM as the only measure of cost. There is design time and there is system level cost that should be accounted for

A good designer can manage these things during a project

A **great** designer can anticipate these things **before** a project and plan around them

Look at the design at the subsystem level and system level and figure out how to best optimize



Reference Design Library

Jump start system design and speed time to market

- » Comprehensive designs include schematics or block diagrams, BOMs, design files and test reports
- » Created by experts with deep system and product knowledge
- » Spans TI's portfolio of analog, embedded processor and connectivity products

» Supports a broad range of applications including industrial, automotive, consumer, medical and more

Microprocessors: Microcontrollers vs Single Board Computers

a comparison

What's the difference?

- TI LaunchPad
- BeagleBone
- Arduino
- RasPi

Design Considerations

- Do I need an operating system?
- Do I want it to be low cost?
- Can I program in C or do I need to use another language?
- Do I need real-time capability?

BeagleBone Black

Microprocessors: Microcontrollers vs Single Board Computers

a comparison

Advantages

- Overall less complex
- Overall less cost
- Overall lower power consumption
- Real-time capable

Considerations:

- Power
- Integration
- Performance
- Cost

Advantages

- Overall higher performance
- Overall more peripheral capabilities
- More flexible software options and the ability to run Linux OS

Disadvantages

- Less flexible software paths
- Less performance for computation intensive applications
- Only able to run RTOS but not full OS options

Disadvantages

- More cost and complexity
- Managing Linux related updates
- Real-time capabilities often limited
- Higher power consumption

Microprocessors: Selecting a Processor

tips & cautions

How to pick a processor

- Don't always trust the vendor to guide you - they have many parts they are trying to sell! Define your spec and stick to it
- Look for community, educational resources, and training
- Look for well written documentation, clean getting started experiences, accessible software
- Look for company support (phone or email), distributor support, pre-certifications to speed time to market
- Beware of NDAs, complicated licenses, poor distribution, high obsolete rates

Microprocessors: SoC or SoM or SiP a comparison

SoC (System on Chip)

Integrated processor chip with multiple cores and radios

Advantages

Integrate key parts of a complex circuit to save space on a PCB circuit design

Disadvantages

Slightly Expensive

Examples

- CC3220 Wi-Fi
- CC2640R2F BLE

SoM (System on Module)

Highly integrated compute module that is added to various embedded systems

Advantages

- Easily integrate a very complex piece of the PCB design into simpler PCB circuit designs
- Save space and design time

Disadvantages

Expensive

Examples

- BeagleCore
- CC2650MODA

SiP (System in Package)

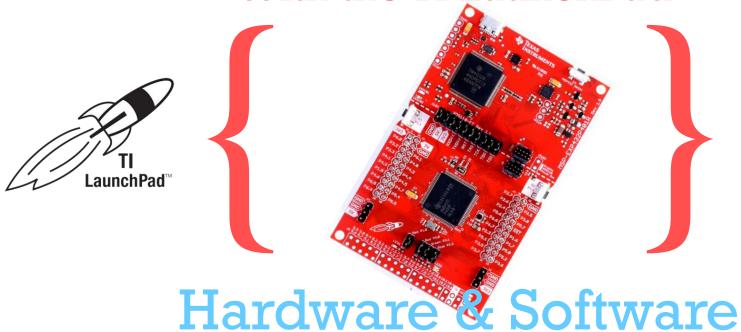
Integrated processor chip and circuitry all in one

Advantages

- Very easily integrate a complex processor into a small space
- Save manufacturing cost and development time on board design

Disadvantages

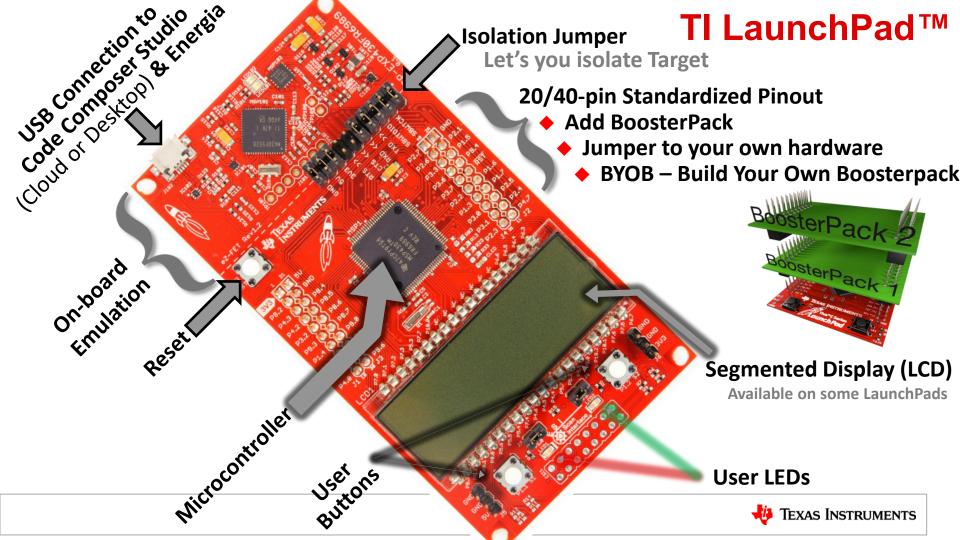
Expensive

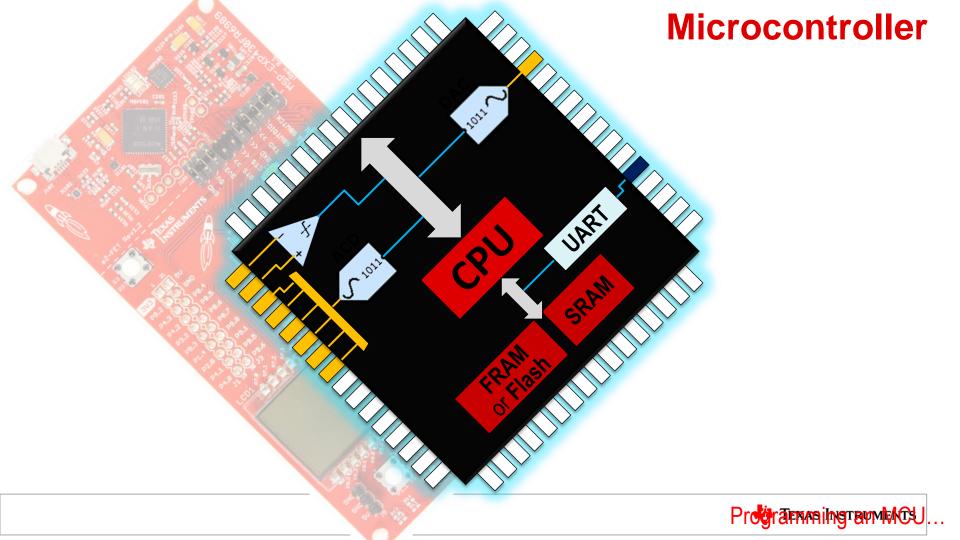

Examples

Octavo OSD3358

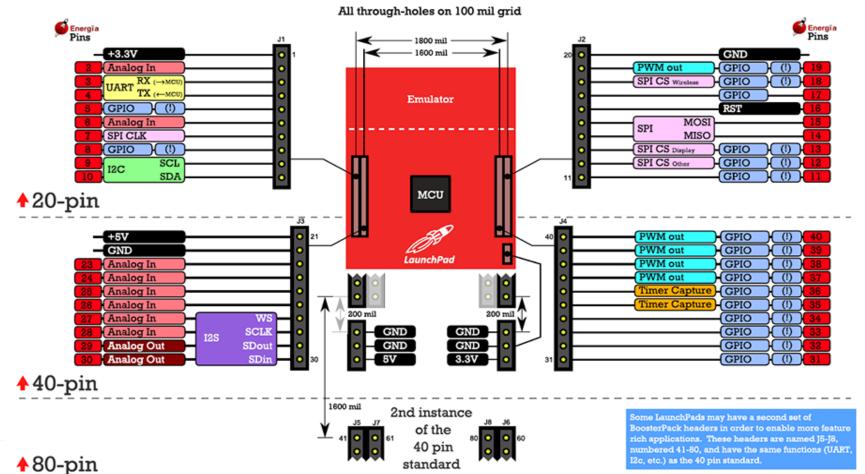
Making MADE simple

With the TI LaunchPad





Why TI LaunchPad™ is better?


- Price \$10-\$30
- HW Debugger

- Focus on Prototype to Production
- Performance and Variety
- TI online resources Multiple supported SW paths

BoosterPack pinout standard (ti.com/byob)

6

NTS

BoosterPack pinout standard (ti.com/byob)

The BoosterPack pinout standard enables:

- Cross-compatibility between LaunchPads & BoosterPacks
- BoosterPack stackability to create more complex
 solutions
- The same BoosterPack can work across multiple LaunchPads
- Learn more @ www.ti.com/byob
- Build your own BoosterPack (BYOB) with templates, resources & more!

Quick demo recipes

Enable customers to experience TI differentiation

WiFi-enabled Meat Probe "iGrill". Send a tweet when

temp exceeds threshold.

Create a battery-powered

WiFi-connected NFC/RFID tag reader

Create a multi-point SubGHz RF wireless temperature sensor network

CC3200 Wi-Fi LaunchPad

MSP430F5529

LaunchPad

NFC/RFID (TRF7970A) Sub-1GHz (CC110L)

WiFi

CC3100

BoosterPack

MEMS Temp Sense

BoosterPack (TMP006)

Thermocouple

BoosterPack

(ADS1118)

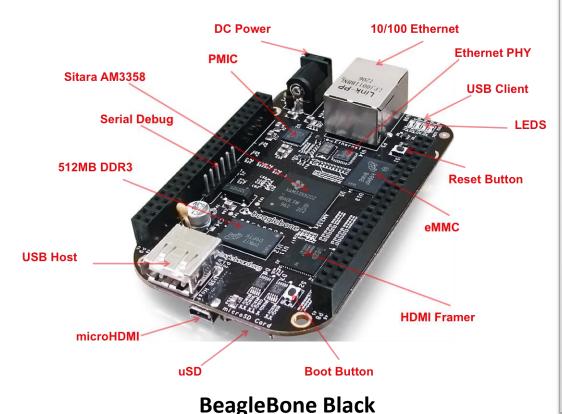
Making MADE simple

With the BeagleBone

Hardware & Software

Rapid Prototyping

With BeagleBone Black and Capes



Why Beaglebone Black is great?

- Price ~\$45
- Large community
- Online resources from TI and Beagleboard.org

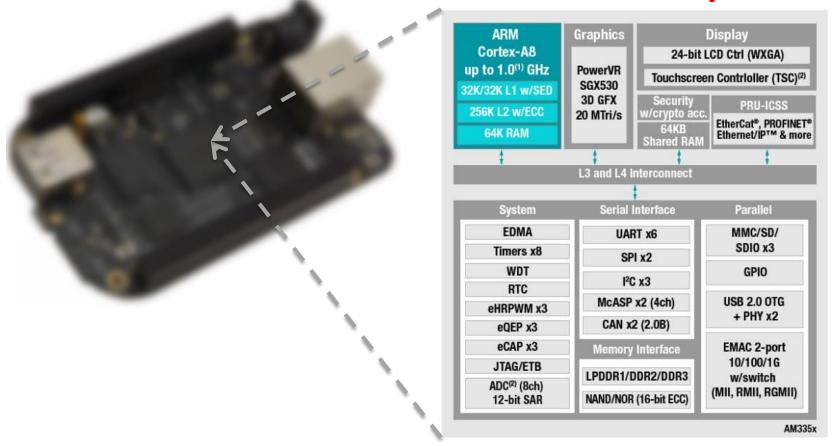
- Full Linux capable single board computer
- Multiple supported SW paths
- Completely open source for building your own derivative products!

BeagleBone Black

Processor: AM335x 1GHz ARM® Cortex-A8

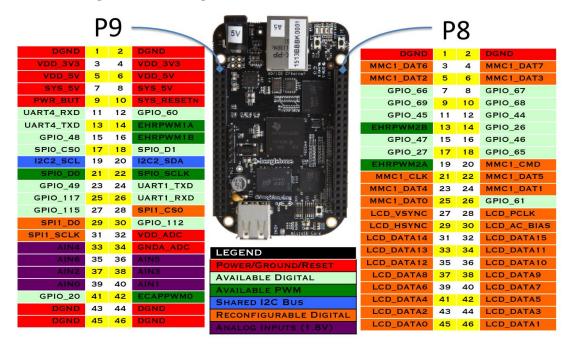
- 512MB DDR3 RAM
- 4GB 8-bit eMMC on-board flash storage
- 3D graphics accelerator
- NEON floating-point accelerator
- 2x PRU 32-bit microcontrollers

Connectivity


- USB client for power & communications
- USB host
- Ethernet
- HDMI
- 2x 46 pin headers ... Add a 'Cape'

Software Compatibility

- Debian
- Android
- Ubuntu
- Cloud9 IDE on Node.js w/ BoneScript lib
- plus much more


AM3358 Microprocessor

BeagleBone Capes

Pin access to external circuits or stackable modular hardware capes through dual 46 pin headers

Cape Expansion Headers

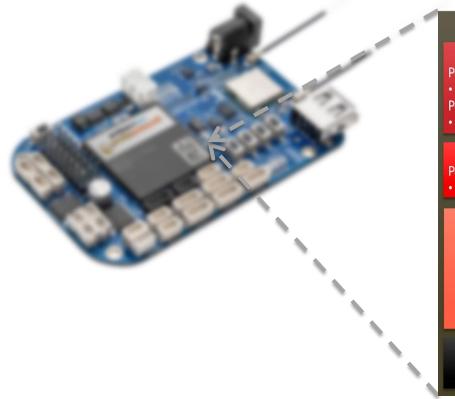
BeagleBone Blue for Robotics

BeagleBone Blue

Processor: OSD335x 1GHz ARM® Cortex-A8

- 512MB DDR3 RAM
- 4GB 8-bit eMMC on-board flash storage
- 3D graphics accelerator
- NEON floating-point accelerator
- 2x PRU 32-bit microcontrollers

Connectivity


- Battery: 2-cell LiPo support with balancing, 9-18V charger input
- Wireless: 802.11bgn, Bluetooth 4.1 and BLE
- Motor control: 8 6V servo out, 4 DC motor out, 4 quadrature encoder in
- Sensors: 9 axis IMU, barometer
- Connectivity: HighSpeed USB 2.0 client and host
- User interface: 11 user programmable LEDs, 2 user programmable buttons
- Easy connect interfaces for adding additional sensors such as: GPS, DSM2 radio, UARTs, SPI, I2C, 1.8V analog, 3.3V GPIOs

Software Compatibility

- Debian, Android, Ubuntu, plus much more
- ROS, ArduPilot, LabVIEW
- Cloud9 IDE on Node.js w/ BoneScript lib

OSD3358 System-in-Package

400 Ball BGA

TPS65217C

Power In 5V:

- USB, Li-ion Battery Power Out:
- 1.8V, 3.3V, SYS

TL5209

Power Out:

• 3.3V

Up To 1GB DDR3 main memory

Over 140 Passive Components

TI AM335x ARM® Cortex®-A8

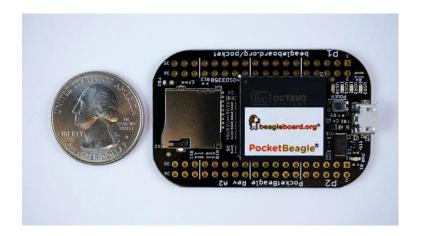
- Up to 1 GHz clock
- 32KB L1 Icache and 32KB L1 Dcache
- 256KB L2 cache
- 64K shared L3 RAM

Parallel

- MMC, SD and SDIO x2
- GPIO x114

Serial

- UART x6
- SPI x2
- 12C x2
- Ethernet 10/100/1000 x 2
- USB 2.0 HS OTG + PHY


System

- 8 channel 12-bit SAR ADC
- JTAG
- 4 timer triggers
- 2 crystal oscillator inputs
- 2 eHARPWM of 16bit time base counter

LCD Display

- Up to 24-bit color
- 3D Graphics Engine
- Character Display
- Active Matrix LCD
- Passive Matrix LCD

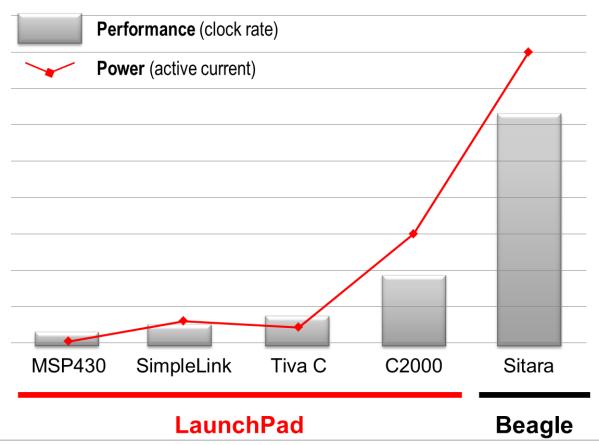
PocketBeagle for Embedded Linux (\$25)

Processor: OSD335x 1GHz ARM® Cortex-A8

- 512MB DDR3 RAM
- 4GB 8-bit eMMC on-board flash storage
- 3D graphics accelerator
- NEON floating-point accelerator
- 2x PRU 32-bit microcontrollers

Connectivity

USB


Software Compatibility

- Debian, Android, Ubuntu, plus much more
- ROS, ArduPilot, LabVIEW
- Cloud9 IDE on Node.js w/ BoneScript lib

PocketBeagle

Performance vs Power

MSP430 is leading ultra-low power processor

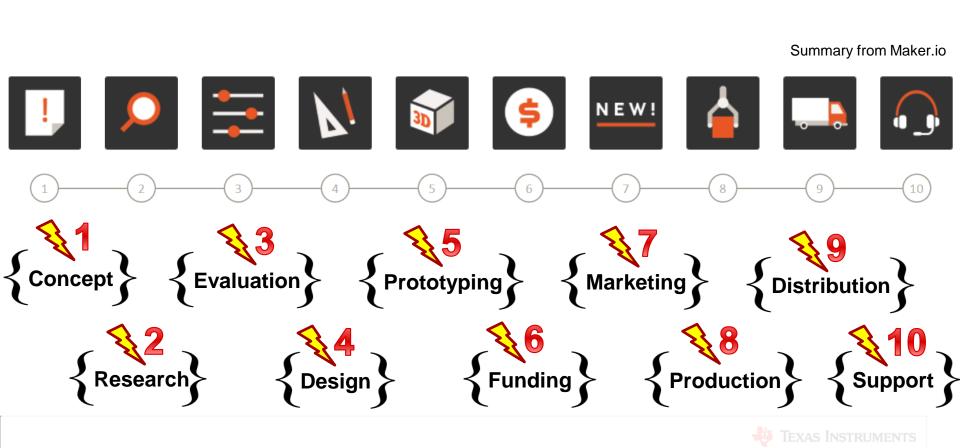
MSP430 microcontroller running off three grapes.

It ran for almost two weeks before the grapes dried out too much.

Is this how raisins are made?

Microcontrollers (MCU) Application (MPU) MSP430 C2000 **SimpleLink DSP Keystone** Sitara 16-bit/32-bit 16/32-bit 32-bit 32-bit 32-bit 32-bit **Ultra Low Power &** Wireless and Linux All-around Real-time **Massive Performance** Connectivity **Android** DSP Cost MSP430 **ARM** • C66 + C66 Real-time C28x **ARM DSP** 16-bit RISC Cortex-A8 A15 + C66 MCU Cortex-M3 C5000 Cortex-A9 • A8 + C64 MSP432 ARM M3+C28 C6000 Cortex-M4F 32-bit ARM Cortex-15 ARM9 + C674 M4 w/ WiFi Low Pwr Mode • \$5 Linux CPU Fix or Float C5000 Low Power Motor Control M3 w/ 2.4GHz 250nA (RTC) • 3D Graphics **DSP** • Up to 12 cores 4 A15 + 770nA (LCD) Digital Power M3 w/ Sub-1GHz 8 C66x • PRU 32-bit fix/float C6000 Smart Analog Precision Timers/PWM M4 w/ Ethernet DSP DSP MMAC's: 352,000 Industrial I/O EnergyTrace++ (MAC+PHY) Flash: 512K 512K 256K to 2M L1: 32K x 2 L1: 32K x 2 L1: 32K x 2 FRAM: 256K L2: 256K L2: 256K L2: 1M + 4MFlash Flash 25 MHz 300 MHz 120 MHz 1.35 GHz 800 MHz 1.4 GHz

Get Started with


BeagleBoards and TI EVMs

Rapid Prototype with

TI LaunchPad Ecosystem

Product Development a birds eye view

Hardware is hard, so you need to have a plan and understand the product development cycle

change the world,

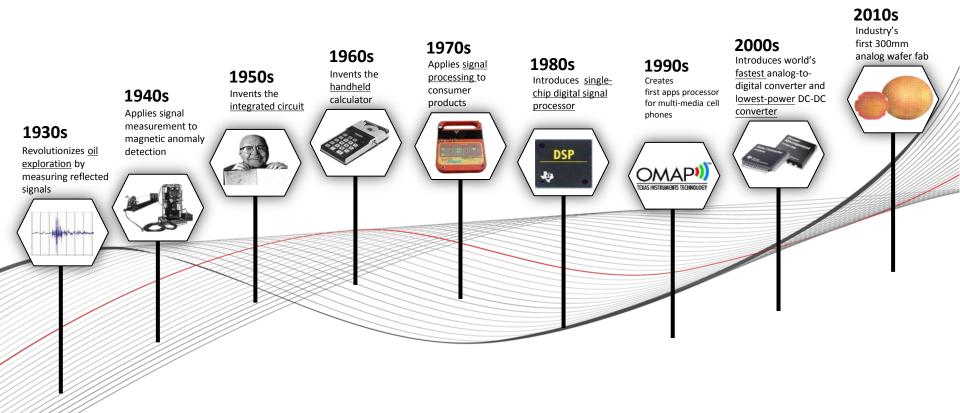
What does TI do? What we've done for over 85 years...

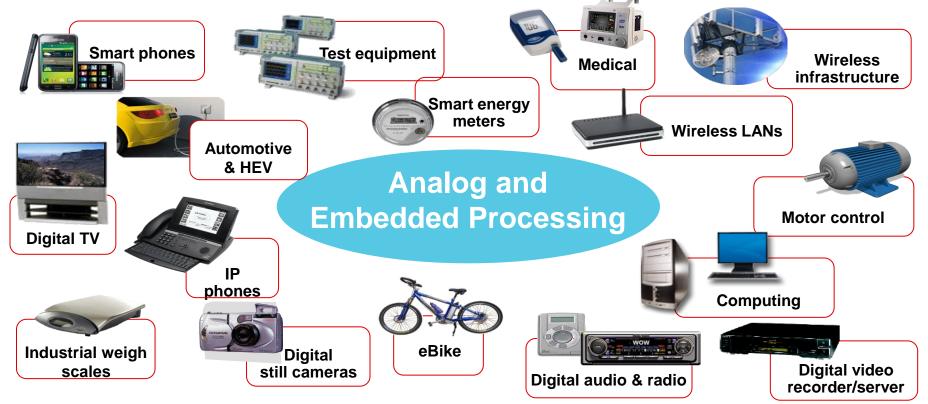
We connect electronics customers to devices and technology that will help them build amazing products!

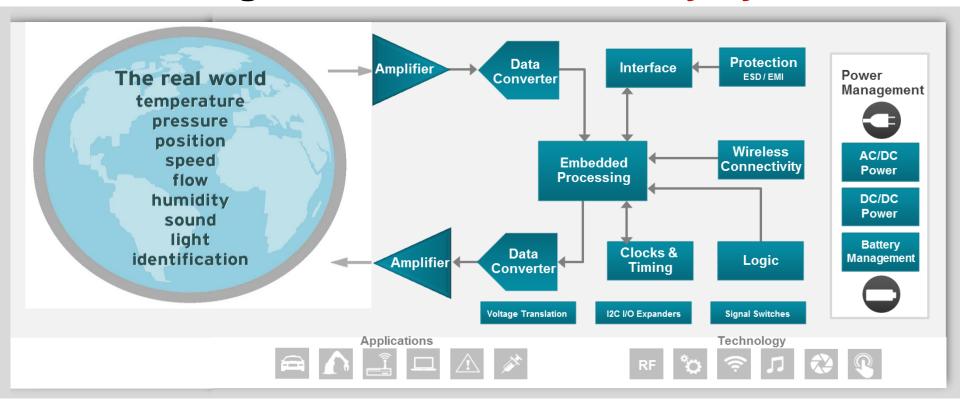
Want to work for TI?

- Internships
- Rotation Programs
- Full-time positionscareers.ti.com

love your job.






Nearly Nine Decades of InnovaTion

Everyday electronics that use TI technology

TI technologies at the heart of every system

Signal chain from the real world to the digital realm

university.ti.com

The Texas Instruments
University Program is dedicated
to supporting engineering
educators, researchers and
students worldwide.

Teaching materials

Research labs

Design projects

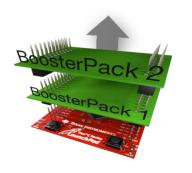
Course Curricula

Teaching labs

Making MADE simple

With the TI LaunchPad

Hardware & Software


89

The LaunchPad Concept

Rapidly Prototype **TI Solutions with** Modular Hardware, Intuitive Software, & Community Support

This overview shows why TI LaunchPad™ is the highest value microcontroller development tool on the market

Modular & Affordable Hardware

Intuitive & Flexible Software

Accessible & Engaged Community Support

TEXAS INSTRUMENTS

LaunchPad is TI's Common Denominator

Modular hardware enables developers to explore new ideas quickly

TI Wireless: Sub-1GHz, NFC/RFID, Wi-Fi, ZigBee, BLE, Bluetooth

Analog, sensors, displays & more from TI, 3rd parties & Maker community

LaunchPads featuring TI MCUs & BoosterPack interface

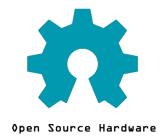
Hercules SimpleLink

BoosterPac/

MSP432 / TM4C (ARM Cortex M4F)

C2000 (Real-time Control)

(Safety)



The LaunchPad Ecosystem

Everything you need to start microcontroller development Hardware + Software + Community

Over 20 types of LaunchPads for different application needs!

The LaunchPad Ecosystem

General & Special Purpose MCUs

The FRAM Advantage: At a Glance www.ti.com/fram

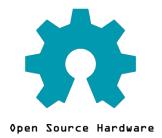
Write More

Collect more data over time with 100x faster writes than Flash Extend product life and ditch the EEPROM with infinite endurance

Decrease Power

Extend battery life with 250x lower energy writes vs Flash
Minimize wireless system power by shortening memory update times

Unified Memory


Simple to use with unmatched flexibility
Migration guides, code examples and application notes available!

The LaunchPad Ecosystem

Everything you need to start microcontroller development Hardware + Software + Community

Many orderable BoosterPacks and open source designs available!

The LaunchPad Ecosystem

Sidekick Basic Kit for TI LaunchPad™

Manufactured by Seeedstudio

Part List

1x Breadboard

1x Breadboard Adapter BoosterPack

5x Green LED

5x Red LED

1x RGB Common Anode LED

10x Ceramic Capacitor 10nF

10x Ceramic Capacitor 100nF

5x Aluminum Capacitor 100uF

10x Resistor 330 ohm

10x Resistor 1K ohm

10x Resistor 10K ohm

1x Tilt Switch

1x Thermistor

1x Photoresistor (photocell)

1x Diode

1x Piezo Buzzer

5x Button

5x Switch

2x Potentiometer with knob

1x Small DC Motor

1x 7 Segment Single Digit Display

1x 8-bit Shift Register (SN74HC595N)

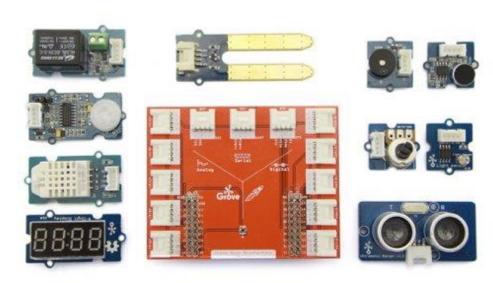
2x NPN Transistor (2N2222)

1x Analog Temperature Sensor

(LM19CIZ/NOPB)

5x Jumper Wire Long

20x Jumper Wire Short


1x Sidekick Manual

Learning Over 100+ electronic components to build basic and complex circuits Compatibility Useful with any TI LaunchPad or other digital / analog development kit Completeness All the popular accessories for beginners to develop with microcontrollers 141

Grove Starter Kit for TI LaunchPad™

Manufactured by Seeedstudio

Part List

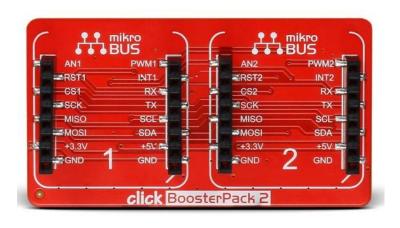
- 1x Grove Base BoosterPack
- 1x Grove Buzzer (Digital)
- 1x Grove Relay (Digital)
- 1x Grove 4-Digit-Display (Digital)
- 1x Grove Ultrasonic Range Sensor (Digital)
- 1x Grove PIR Motion Sensor (Digital)
- 1x Grove Light Sensor (Analog)
- 1x Grove Sound Sensor (Analog)
- 1x Grove Moisture Sensor (Analog)
- 1x Grove Temperature Humidity Sensor (Analog)
- 1x Grove Rotary Angle Sensor (Analog)

Grove Cables

Starter Guide Manual

Learning 10 different grove modules to build basic and complex systems

Compatibility Useful with any TI LaunchPad or other digital / analog development kit


Completeness All the popular accessories for beginners to develop with microcontrollers 142

Learn more @ www.energia.nu/grovekit

Click BoosterPack 2

Manufactured by MikroElektronika

Click BoosterPack 2 has two mikroBUS sockets onboard, for simple and easy integration of MikroElektronika click boards with a TI LaunchPad $^{\text{TM}}$.

Add new functionality to your LaunchPad within minutes. More than 250 <u>click boards</u> available from audio and voice to power management and wireless connectivity clicks.

All MikroElektronika compilers come with code examples, so you'll have a great base to start with.

Learning Click boards to build basic and complex systems **Compatibility** Useful with any TI LaunchPad or other digital / analog development kit **Completeness** All the popular accessories for beginners to develop with microcontrollers 143

Learn more @ www.energia.nu/click

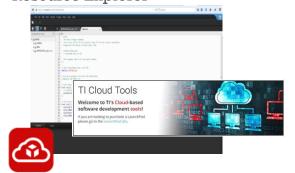
We all can CODE!

Intuitive & flexible software development paths speed up firmware creation for rapid prototyping

Rapid Prototyping

Energia

Light-weight, Community-driven,
Wiring-based IDE for quick evaluation



- Intuitive coding environment
- Simplified interface
- Highly-abstracted API framework
- Open Source & Community-driven

Evaluation

CCS Cloud

Browser-based code editor and Resource Explorer

- Cross Platform
- Fast start & no installation
- Use Energia, TI-RTOS & more
- Resource Explorer integration

Advanced

CCS & Pro Tools

Fully-capable dev environments from TI & third parties

- Full debug capability & more
- Import Energia projects
- Access to third party compilers, features, and apps

TEXAS INSTRUMENTS

Energia Abstraction

Fly high above the bits & bytes

Abstraction

Highly-abstracted functional APIs

Boils it down to line of code

int sensorRead = analogRead(A0); // Read analog channel A0

Peripheral Driver Library

Low level abstraction layer for populating peripheral registers

```
int analogRead(int_pin
  ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
  ROM_GPIOPinTypeADC((uint32_t) portBASERegister(port), digitalPinToBitMask(pin));
  ROM_ADCSequenceConfigure(ADC0_BASE, 3, ADC_TRIGGER_PROCESSOR, 0)
  ROM_ADCSequenceStepConfigure(ADC0_BASE, 3, 0, channel | ADC_CTL_IE | ADC_CTL_END);
  ROM_ADCSequenceEnable(ADC0_BASE, 3);
  ROM_ADCIntClear(ADC0_BASE, 3)
  ROM ADCProcessorTrigger(ADC0_BASE, 3);
  while(IROM_ADCIntStatus(ADC0_BASE, 3, false)) {
  ROM_ADCIntClear(ADC0_BASE, 3);
  ROM_ADCSequenceDataGet(ADC0_BASE, 3, (unsigned long*) value);
  return value[0]:
```

Low-level C Code

Each TI microcontroller peripheral is defined by a collection of registers

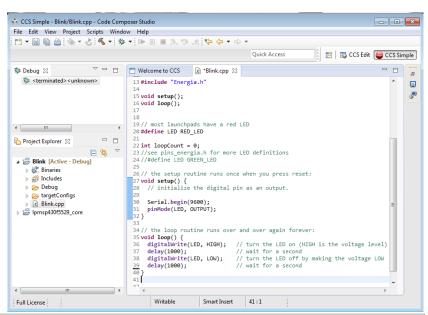
GPIO Registers:

- **GPIODIR**
- **GPIOAFSEL** GPIODR2R
- GPIOAMSEL

ADC Registers:

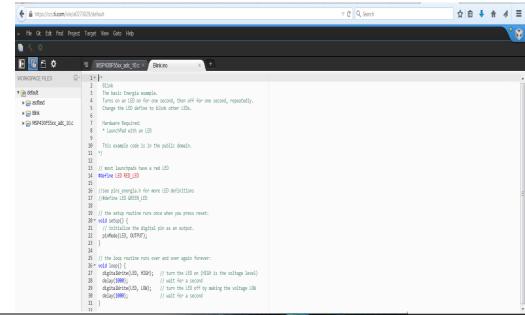
- **ADCACTSS ADCEMUX ADCSSPRI** ADCISC
- **ADCPSSI**
- ADCSSFSTAT0 ADCSSFIF00

Control MCU hardware & peripherals



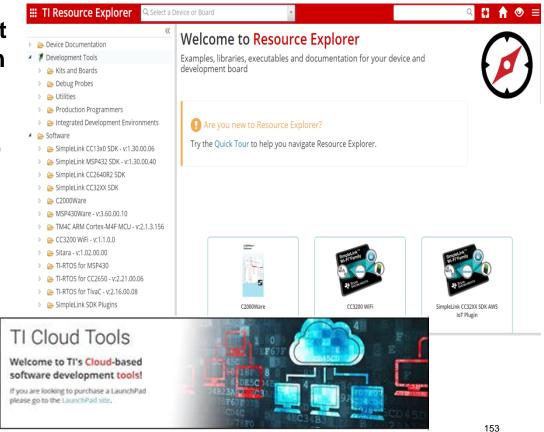
Energia Import in CCSv6+ and CCS Cloud

- Import an Energia sketch into Code Composer Studio v6 or v7 & pick up right where you left off.
- CCS introduces full debug capability & other professional features to further optimize your design.
- Modularize your code & leverage Energia APIs & libraries within CCS
- Enable "hybrid" projects that leverage low-level C, assembly & even abstracted Energia APIs
 enabling a developer maximum flexibility during code development.



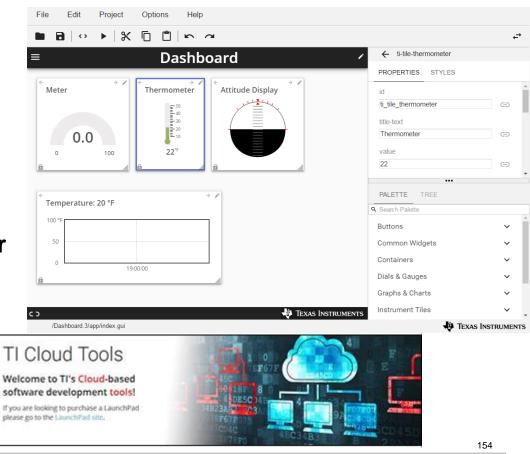
Code Composer Studio Cloud

- Browser based code editing tool to get your started quickly
- Access Resource Explorer to get the latest code examples, design files, and more.
- Cross Platform and allows you to upload firmware using TI Cloud Agent + Browser Extension
- Extended Debugging capability
 - http://dev.ti.com



Resource Explorer

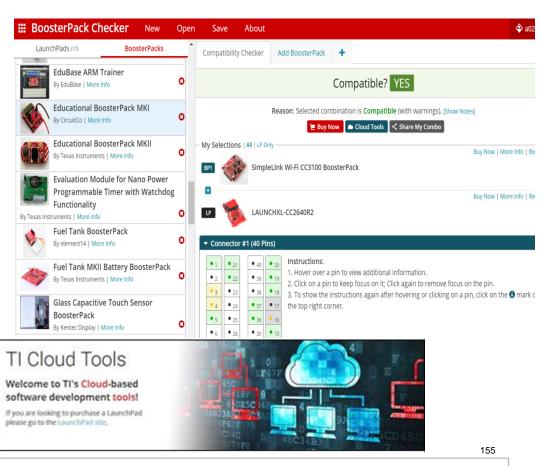
- Access Resource Explorer to get the latest code examples, design files, and more.
- Support for TI-RTOS, FreeRTOS, and non-RTOS based code examples
- Materials for all TI processors searchable by part number and EVM


http://dev.ti.com

GUI Composer

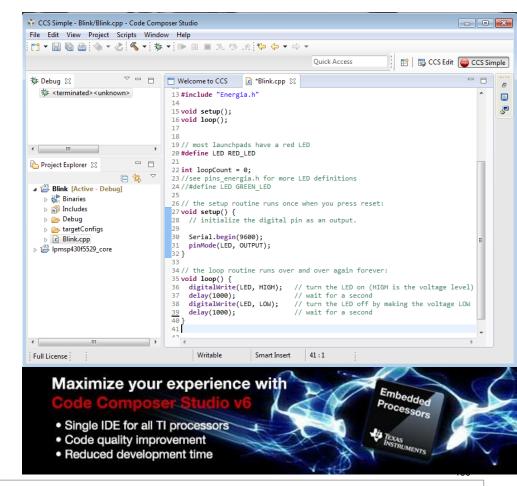
- Create an interface to your application using user interface tool from TI
- Make use of streaming data, graphing tools, and widgets
- Share the GUI through the web or export to a local PC application

http://dev.ti.com



BoosterPack Checker

 Check compatibility with different LaunchPad and BoosterPack combinations


http://dev.ti.com

Code Composer Studio 7

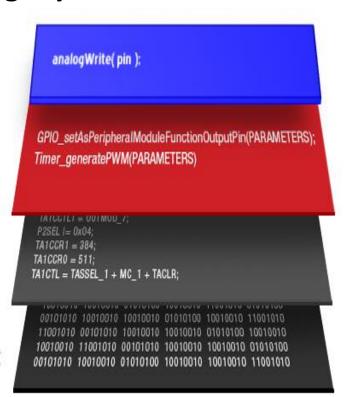
- Eclipse-based IDE for professional firmware developers that supports all TI processors
- CCS App Center allows you to stay current with the latest plugins and updates
- Use tools such as Energy Trace, GRACE, and more to optimize your workflow and application
- Resource Explorer exposes thousands of code examples and technical materials

TI-RTOS and FreeRTOS

- The use of Real-Time Operating Systems (RTOS) is getting more common for IoT firmware deployment
- A simple operating system can schedule tasks and do a variety of **functions**
- RTOS helps with maximizing power efficiency, implementing security, managing wireless communication, and other complex functions
- Improves software quality and portability

Many free and open source options available today with TI RTOS and FreeRTOS recommended for TI devices

157

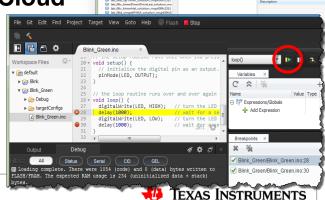

MSP Software Development Pick a Coding Style...

Energia

Driver Library C coding / RTOS

Register-Based C coding

Low-Level Hex programming


Choose a Tool...

Energia IDE

CCS Desktop

CCS Cloud

ii iii, 2-bit, voit, sindaton, mapt 2017/2311
bit, 96c, crystodes
color frontier

Accessible & engaged community support gives new and experienced developers information to solve issues quickly

www.43oh.com

e2e.ti.com

www.hackster.io/ti-launchpad

ti.com/lyd

The Community

Get support from TI & the online community!

- http://e2e.ti.com
- Supported 24/7 by TI engineers!

- Over 1 million Q&As available on-demand
- Get support on TI's complete portfolio from microcontrollers to analog to connectivity

- www.43oh.com
- ~20,000 active members
- ~60 forum users online at any given time!
- Active & friendly online community & blog for the LaunchPad ecosystem!
- Home to much of the Energia community

hackster.io - Share your electronics projects!

www.hackster.io/ti-launchpad www.hackster.io/texasinstruments





Where to go next: www.ti.com/launchpad Tl's official LaunchPad portal

Get specs, order hardware, find software tools, and download datasheets and design files

Sign up for a myTl account!

TI LaunchPad[™] provides an ecosystem of hardware and software products, and community online resources that provides incredible value for rapid prototyping

Making MADE simple

With the TI LaunchPad

www.ti.com/launchpad

Questions?

TEXAS INSTRUMENTS

Lab 3 Wi-Fi IoT with Temboo and Twitter

We will break here to get to the heart of the lab portion!

- Step 1: Navigate to the lab details or refer to handout
- Step 2: Create an account on <u>www.temboo.com</u>
- Step 3: Follow the lab details, no rude twitter shenanigans please
- Step 4: Raise your hand if you need assistance

Lab: https://goo.gl/VbymuW

SSID: TEXINS3

PASS: launchpad

Wi-Fi Connection for your LaunchPad, not your laptop, thanks!

Lab 4 GUI Composer

We will break here to get to the bonus lab portion!

- Step 1: Navigate to the lab details or refer to handout
- Step 2: Follow the lab details
- Step 3: Raise your hand if you need assistance

Lab. https://goo.gl/VbymuW

SSID: TEXINS3

PASS: launchpad

Wi-Fi Connection for your LaunchPad, not your laptop, thanks!

Lab 5 More Wi-Fi IoT with Temboo

We will break here to get to the bonus lab portion!

- Step 1: Navigate to the lab details or refer to handout
- Step 2: Follow the lab details
- Step 3: Raise your hand if you need assistance

Lab. https://goo.gl/VbymuW

SSID: **TEXINS3**

PASS: launchpad

Local Wi-Fi Connection for your computer

SSID: **TEXINS3**

PASS: launchpad

Wi-Fi Connection for your LaunchPad, not your laptop, thanks!

