

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-92648 Rev. ** Revised August 21, 2014

Features
 Separate Bootloader and Bootloadable components

 Configurable set of supported commands

 Flexible component configuration

General Description
The bootloader system manages the process of updating the device flash memory with new
application code and/or data. To make the process work we use these components:

 Bootloader project: project with Bootloader and Communication components

 Bootloadable project: project with a Bootloadable component, which creates the code

Bootloader Component
The Bootloader component allows you to update the device flash memory with new code. The
bootloader accepts and executes commands, then passes command responses back to the
communications component. The bootloader collects and arranges the received data and
manages the actual writing of flash through a simple command/status register interface.
The project application type needs to match the component placed on the schematic. As an
example for a bootloader project, set the Application Type to Bootloader (under Build Settings)
and place a Bootloader component onto the schematic. For information about application types,
see the PSoC Creator Help.
The bootloader manages the communications protocol to receive commands from an external
system and pass those commands to the bootloader. It also passes command responses from
the bootloader back to the off-chip system.

Architecture

Supported Interfaces

Custom Interface USB UART I2C SPI

PSoC 3 / PSoC 5LP     

PSoC 4  

Bootloader and Bootloadable
1.30

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 2 of 30 Document Number: 001-92648 Rev. **

Notes:

 The I2C interface on PSoC 4 is implemented with the SCB component.

 The Custom Interface option allows adding bootloader support to any existing
communications component. See the corresponding communications component
datasheet for more details about the appropriate communication method.

 For PSoC 4000 devices, each update to a flash row will automatically modify the clock
settings for the device. Writing to flash requires that changes be made to the IMO and
HFCLK settings. The configuration is restored after each row is written.

□ HFCLK will have several frequency changes during each write to a flash row
between a minimum frequency of the current IMO frequency divided by 8 and a
maximum frequency of 12 MHz.

□ These clock changes will impact the operation of the communications component
and any other hardware that is present in the bootloader project.

□ The I2C slave component is tolerant of clock changes, but the clock changes can
result in a NAK response when transactions occur during a row write. The
bootloader host should be designed to retry in this case.

Bootloadable Component
When you use the Bootloadable component, you can specify additional parameters for the
bootloadable project.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 001-92648 Rev. ** Page 3 of 30

Bootloader Component Parameters
Drag a Bootloader component onto your design and double-click it to open the Configure dialog.

The Bootloader component has the following parameters:

Communication component
This is the communications component that the bootloader uses to receive commands and send
responses. Select one, and only one, communications component. This property is a list of the
available communications protocols on the schematic that have bootloader support. In all cases,
independent of what is on the schematic, there is also a custom interface option available that
allows for implementing the bootloader functions directly. For information and instructions on
how to do this, see the Component Author Guide.
If there is no communications component on the schematic, then the Custom Interface option is
selected. This allows for implementing the communication in any way. See the corresponding
component datasheet for more details about the appropriate communication method.

Multi-application bootloader
This option allows two bootloadable applications to reside in flash. It is useful for designs that
require a guarantee that there is always a valid application that can be run. This guarantee
comes with the limitation that each application has one half of the flash available from what
would have been available for a "standard" bootloader project.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 4 of 30 Document Number: 001-92648 Rev. **

Wait for command
On device reset, the bootloader can wait for a command from the bootloader host or jump to the
application code immediately. If this option is enabled, the bootloader waits for a command from
the host until the timeout period specified by Wait for command time parameter occurs. If the
bootloader does not receive this command within the specified timeout interval, the active
bootloadable project in the flash is executed after the timeout.

Wait for command time
If the bootloader waits for the command to start loading a new bootloadable application after a
reset, this is the amount of time it waits before starting the existing bootloadable application. This
option is valid only if Wait for command is enabled, otherwise it is ignored and grayed out. The
zero value is interpreted as wait forever. The default value is a 2 second time out.

Bootloader application version
This parameter provides a 2 byte number to represent the version of the Bootloader application.
Default value is 0x0000.

Packet checksum type
This parameter has a couple of options for the type of checksum to use when transferring
packets of data between the host and the bootloader. The default value is Basic summation.
The basic summation checksum is computed by adding all the bytes (excluding the checksum)
and then taking the 2’s complement. The other option is CRC-16CCITT ‒ the 16 bit CRC using
the CCITT algorithm.
The checksum is computed for the entire packet with the exception of the Checksum and End of
Packet fields.

Fast bootloadable application validation
This option controls how the bootloader verifies the application data. If it is disabled, the
bootloader computes the bootloadable application checksum every time before starting it. If
enabled, the bootloader only computes the checksum the first time and assumes that it remains
valid in each future startup.

Bootloader application validation
If this option is enabled, the bootloader validates itself by calculating the checksum and
comparing it with the saved one that resides in metadata. If the validation is not passed, the
device is halted. If this option is disabled, the bootloader is executed even if it is corrupted. This
could lead to unpredictable results.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 001-92648 Rev. ** Page 5 of 30

Optional Commands
This group of options determines whether or not a corresponding command is supported by the
bootloader. If it is enabled, then the corresponding command is supported. By default all optional
commands are supported.
The Get flash size, Send data, and Verify row commands are required by the Cypress
Bootloader Host tool. These commands might not be used by custom bootloader host tools.

Bootloadable Component Parameters
Drag a bootloadable component onto your design and double-click it to open the Configure
dialog.

General Tab

The General tab of the Bootloadable component contains the following parameters:

Application version
This parameter provides a 2 byte number to represent the version of the bootloadable
application. Default value is 0x0000.

Application ID
This parameter provides a 2 byte number to represent the ID of the bootloadable application.
The default value is 0x0000.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 6 of 30 Document Number: 001-92648 Rev. **

Application custom ID
This parameter provides a 4 byte custom ID number to represent anything in the bootloadable
application. The default value is 0x00000000.

Manual application image placement
If this option is enabled, PSoC Creator places the bootloadable application image(s) at the
location specified by Placement address option. It is also placed according to the rules outlined
in section Bootloadable Project below.
Use this option independently for each of two bootloadable applications, if both of them are
referenced to the Multiapplication bootloader application.

Placement Address
This option allows you to specify the address where the bootloadable application is placed in
memory. This option is only valid if you enable the Manual application image placement
option; otherwise it is grayed out. You need to specify the address above the bootloader image
and below the metadata area.
You calculate the placement address by multiplying the number of the flash row (starting from
which the image is placed) by the flash row size and adding result to the flash base address.
Align the placement address to the flash row size. See the Flash and EEPROM chapter of the
System Reference Guide for details about flash memory organization.
You get the first available row for the bootloadable application from the associated cyacd file
when the Manual application image placement option is disabled or can be reported by the
Get Flash Size command.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 001-92648 Rev. ** Page 7 of 30

Dependencies Tab

The Dependencies tab of the Bootloadable component contains the following parameters:

Bootloader HEX file
This option allows you to associate a bootloadable project with the bootloader project HEX file.
This is necessary so that the build of the bootloadable project gets the information about the
bootloader project (for example, properly calculate where it belongs in memory).

Bootloader ELF file
This option allows you to associate a bootloadable project with the bootloader project ELF file.
The ELF file extension depends on IDE. For example, PSoC Creator generates ELF files with
*.elf extension, while other IDEs produce *.elf, *.out, or *.axf files.
This option is automatically populated with the path to the *.elf file, if it is located in the same
folder with the specified HEX file. You can always update this option and specify the path to the
ELF file manually.
Note Make sure that HEX and ELF files are generated by the same build process to ensure that
they are coherent.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 8 of 30 Document Number: 001-92648 Rev. **

Application Programming Interface
Application Programming Interface (API) routines allow you to configure the component using
software. This table lists and describes the interface to each function. The following sections
cover each function in more detail.
By default, PSoC Creator assigns the instance name “Bootloader_1” to the first instance of a
Bootloader component and “Bootloadable_1” to the first instance of a Bootloadable component
in a given design. You can rename the instance to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance names used in the following tables
are “Bootloader” and “Bootloadable.”

Bootloader and Bootloadable Functions
Function Description

Bootloader_Start() Once called, a software reset is executed, and then the Bootloader
application takes over the CPU.

Bootloader_GetMetadata() Returns value of the specified field of the metadata section.

Bootloader_ValidateBootloadable() Verifies validation of the specified application.

Bootloader_Exit() Schedules the specified application and performs software reset to launch it.

Bootloader_Calc8BitSum() Computes the 8 bit sum for the specified data.

Bootloadable_Load() Updates the meta data area for Bootloader to be started on device reset and
resets device.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 001-92648 Rev. ** Page 9 of 30

void Bootloader_Start(void)
Description: This function is called in order to execute the following:

- Identify the active bootloadable application (applicable only to the Multi-application
bootloader).

- Validate the bootloader application (design-time configurable, Bootloader application
validation option of the component customizer).

- Validate the active bootloadable application. If active bootloadable application is not
valid, and the other bootloadable application (inactive) is valid, the last one is started.

- Run a communication subroutine (design-time configurable, Wait for command option of
the component customizer).

- Schedule the bootloadable and reset the device.

Parameters: None

Return Value: This method will never return. It will either load a new application and reset the device or
jump directly to the existing application. The CPU is halted if validation failed when
"Bootloader application validation" option is enabled.
PSoC 3/PSoC 5: The CPU is halted if Flash initialization fails.

Side Effects: If the Bootloader application validation option is enabled and this method determines that
the bootloader application itself is corrupt, this method will not return. Instead, it will simply
hang the application.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 10 of 30 Document Number: 001-92648 Rev. **

uint32 Bootloader_GetMetadata(uint8 field, uint8 appId)
Description: Returns value of the specified field of the metadata section.

Parameters: field: The field to get data from:

Parameter Value Description

Bootloader_GET_BTLDB_CHECKSUM Bootloadable Application Checksum

Bootloader_GET_BTLDB_ADDR Bootloadable Application Start Routine
Address

Bootloader_GET_BTLDR_LAST_ROW Bootloader Last Flash Row

Bootloader_GET_BTLDB_LENGTH Bootloadable Application Length

Bootloader_GET_BTLDB_ACTIVE Active Bootloadable Application

Bootloader_GET_BTLDB_STATUS Bootloadable Application Verification
Status

Bootloader_GET_BTLDR_APP_VERSION Bootloader Application Version

Bootloader_GET_BTLDB_APP_VERSION Bootloadable Application Version

Bootloader_GET_BTLDB_APP_ID Bootloadable Application ID

Bootloader_GET_BTLDB_APP_CUST_ID Bootloadable Application Custom ID

 appId: The number of the bootloadable application. Should be 0 for the normal bootloader
and 0 or 1 for the Multi-Application bootloader.

Return Value: None

Side Effects: None

cystatus Bootloader_ValidateBootloadable(uint8 appId)
Description: Performs bootloadable application validation by calculating the application image checksum

and comparing it with the checksum value stored in the Bootloadable Application Checksum
field of the metadata section.
If Fast bootloadable application validation option is enabled in the component customizer
and bootloadable application successfully passes validation, the Bootloadable Application
Verification Status field of the metadata section is updated.
If Fast bootloadable application validation option is enabled and Bootloadable
Application Verification Status field of the metadata section claims that bootloadable
application is valid, the function returns CYRET_SUCCESS without further checksum
calculation.
Refer to the Metadata section for the details.

Parameters: appId: The number of the bootloadable application. Should be 0 for the normal bootloader
and 0 or 1 for the Multi-Application bootloader.

Return Value: Returns CYRET_SUCCESS if the specified bootloadable application is valid.

Side Effects: None

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 001-92648 Rev. ** Page 11 of 30

void Bootloader_Exit(uint8 appId)
Description: Schedules the specified application and performs software reset to launch it.

If the specified application is not valid Bootloader (the result of the ValidateBootloadable()
function execution returns other than CYRET_SUCCESS, the bootloader application is
launched.

Parameters: application: application to be started.

Constant Description

Bootloader_EXIT_TO_BTLDR Bootloader application will be started on
software reset.

Bootloader_EXIT_TO_BTLDB,
Bootloader_EXIT_TO_BTLDB_1

Bootloadable application # 1 will be started on
software reset.

Bootloader_EXIT_TO_BTLDB_2 Bootloadable application # 2 will be started on
software reset. Available only if Multi-
Application option is enabled in the component
customizer.

Return Value: This function never returns.

Side Effects: None

uint8 Bootloader_Calc8BitSum(uint32 baseAddr, uint32 start, uint32 size)
Description: This computes the 8 bit sum for the provided number of bytes contained in Flash

(if baseAddr equals CY_FLASH_BASE) or EEPROM (if baseAddr equals
CY_EEPROM_BASE).

Parameters: baseAddr:
CY_FLASH_BASE
CY_EEPROM_BASE - applicable only for PSoC 3 / PSoC 5LP devices.
start: The starting address
size: The number of bytes to read and compute checksum

Return Value: Returns 8-bit sum for the provided data

void Bootloadable_Load(void)
Description: Updates the meta data area for Bootloader to be started on device reset and resets

device.
Parameters: None

Return Value: None. The processor is reset upon function execution.

Side Effects: None

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 12 of 30 Document Number: 001-92648 Rev. **

Sample Firmware Source Code
PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.
See the “Find Example Project” topic in the PSoC Creator Help for more information.

MISRA Compliance
This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:

 project deviations – deviations that are applicable for all PSoC Creator components

 specific deviations – deviations that are applicable only for this component
This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

Bootloader Component Specific Deviations:

Rule
Rule
Class Rule Description Description of Deviation(s)

14.3 R Before preprocessing, a null statement shall
only occur on a line by itself; it may be
followed by a comment provided that the
first character following the null statement is
a white-space character.

Null statement is located close to other code:
the CyGlobalIntEnable macro is followed by a
semi-colon, while its implementation includes
semi-colon. Applicable for PSoC 3/PSoC 5
devices.

14.5 R The continue statement shall not be used. A 'continue' statement has been used in 2
places to simplify packet processing.

14.7 R A function shall have a single point of exit at
the end of the function.

Multiple points of exit are used in the function
that verifies validity of the bootloadable
applications.

19.7 A A function should be used in preference to
a function-like macro.

Deviated since function-like macros are used
to allow more efficient code.

Bootloadable Component Specific Deviations:

Rule
Rule
Class Rule Description Description of Deviation(s)

19.7 A A function should be used in preference to
a function-like macro.

Deviated since function-like macros are used
to allow more efficient code.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 001-92648 Rev. ** Page 13 of 30

API Memory Usage
The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.
The measurements were done with the associated compiler configured in Release mode with
optimization set for Size. For a specific design, the map file generated by the compiler can be
analyzed to determine the memory usage.
Note For PSoC 4 and PSoC 5LP devices, the SRAM usage is shown without space reserved for
heap and stack.

PSoC 3 (Keil_PK51)
Configuration Flash Bytes SRAM Bytes

Bootloader 2321 4

Full Bootloader Application [1] 7209 995

Full Bootloadable Application [2] 1561 95

PSoC 4 (GCC)

Configuration
PSoC 4000 PSoC 4100/

PSoC 4200
PSoC 4100-BL/
PSoC 4200-BL

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Bootloader 802 8 802 8 802 8

Full Bootloader Application [1] 4080 356 3808 440 3984 456

Full Bootloadable Application [2] 992 148 886 256 1038 256

1 The measurements for this configuration were done for the entire bootloader project, with the fixed-function

based I2C used as communication component and Bootloader component configured for the minimal flash
consumption.

2 The measurements for this configuration were done for entire bootloadable project. Note The bootloadable
projects contain embedded bootloader projects for the PSoC 4 and PSoC 5LP devices. The size of the
bootloadable application is reported.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 14 of 30 Document Number: 001-92648 Rev. **

PSoC 5LP (GCC)
Configuration Flash Bytes SRAM Bytes

Bootloader 928 8

Full Bootloader Application [1] 4344 613

Full Bootloadable Application [2] 992 301

Functional Description

Definitions

 Application Code and/or Data (ACD) – This file format is installed in flash by the
Bootloader.

 I/O to Flash (IOF) – Operation performed by Bootloader component, transfer ACD from
I/O pins through a communications component to flash.

 Bootloader Project – A PSoC Creator project type that can incorporate a Bootloader
component.

 Bootloadable Project – A PSoC Creator project type that can incorporate a Bootloadable
component. It is loaded into flash by a Bootloader in an IOF operation.

 Bootloader Component – A component that must be placed onto the schematic of the
Bootloader project in order to add bootloader functionality support.

 Bootloadable Component – A component that must be placed onto the schematic of the
Bootloadable project in order to add bootloadable functionality support.

 Row – The Flash data that is accessed in a single operation. Addresses a portion of main
flash and of ECC flash (if ECC is available). Actual number of bytes changes based on
the selected device. PSoC3/5 has 256 main flash bytes + 32 ECC flash bytes = 288 total
bytes per row. PSoC 4 has 128 bytes in a flash row.

 Error Checking and Correction (ECC) – The method used to detect and correct errors
introduced during data storage. PSoC 3/5 devices support the usage of ECC memory as
additional memory when not configured for error protection.

 Communications component – Any component that is visible under the
Communications node in the Cypress Component Catalog in PSoC Creator, that also
implements a standard set of bootloader interface functions.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 001-92648 Rev. ** Page 15 of 30

Bootloader and Bootloadable Project Functions
The bootloader project performs overall transfer of a bootloadable project, or new code, to the
flash via the bootloader project’s communications component. After the transfer, the processor is
always reset. The bootloader project is also responsible at reset time for testing certain
conditions and possibly auto-initiating a transfer if the bootloadable project is non-existent or is
corrupt.
At startup, the bootloader code loads configuration bytes for its own configuration. It must also
initialize the stack and other resources as well as peripherals to do the transfer. When the
transfer is complete, control is passed to the bootloadable project with a software reset.
The bootloadable project then loads configuration bytes for its own configuration; and reinitializes
the stack and other resources and peripherals for its functions. The bootloadable project may call
the Bootloadable_Load() function in the bootloadable project to switch to the bootloader
application (this results in another software reset).

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 16 of 30 Document Number: 001-92648 Rev. **

The following diagram shows how the bootloader works.

Power Up/Startup

Start
Application
Requested?

Came from
Application?

Wait for
Command
 Enabled?

Set Wait Time
(Forever) Set Wait Time

Perform Bootload

Wait for Command

Run Application

Bootloadable_Load()

Request Start
Bootloader

Set Wait Time
(Forever)

Data
Received?

Exit
Bootloader
Command?

Reset

Time Expired?

Request Start
Application

N

N

Run Bootloader

Bootloader_Start()

Valid
Application?

Process
Command

N Y N

Y YN

N

Y Y

Valid
Application?

YY

N

N

Y

When you have finished your development/test cycles and wish to create final images for your
bootloader and associated bootloadable applications, make sure to recompile all of the relevant
projects using the Release configuration of your IDE.

Bootloader Application
You typically complete a bootloader design project by dragging a Bootloader component and
communication component onto the schematic, routing the I/O to pins, setting up clocks, and so
on. A project with Bootloader and communication components implements the basic bootloader

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 001-92648 Rev. ** Page 17 of 30

application function of receiving new code and writing it to flash. You add custom functions to a
basic bootloader project by dragging other components onto the schematic or by adding source
code.

Bootloadable Application
The bootloadable application is actually the code. It is very similar to a normal application type.
The main differences are that a bootloadable application is always associated with a bootloader
application, while a normal project is never associated with a bootloader application.

Export a Design to a 3rd Party IDE
See the "Exporting a Design to a 3rd Party IDE" topic in the PSoC Creator Help for the details on
exporting bootloader and bootloadable application to a 3rd party IDE.

Memory Usage

Bootloader
Normal and bootloader applications reside in flash starting at address zero.

Bootloadable
A bootloadable application occupies flash starting from the next empty flash row to the
bootloader application.
In case of a multi-application bootloader, the first bootloadable application resides above the
bootloader application. The second bootloadable application occupies flash starting at the row
that is halfway between the start of the first bootloadable application and the end of flash.
If the Manual application image placement option in the Bootloadable component customizer
is enabled, the bootloadable application is placed at an address specified by the Placement
address option.
Note In case of a multi-application bootloader, the Manual application image placement and
Placement Address options must be identical for the both bootloadable applications.
Note In case of a multi-application bootloader, the Manual application image placement and
Placement Address options are applicable only to the first bootloadable application. The
second bootloadable application occupies flash starting at the row that is halfway between the
start of the first bootloadable application and the end of flash.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 18 of 30 Document Number: 001-92648 Rev. **

The following diagram shows (from left to right) the memory usage of normal application,
bootloader and bootloadable applications, and the multi-application bootloader two bootloadable
applications:

Normal
Application Bootloader

Application

Bootloadable
Application

Metadata

Multi-Application
Bootloader

Bootloadable
Application

1

Metadata # 1
Metadata # 2

Bootloadable
Application

2

Address 0

The following diagram shows the device's flash memory layout.

Byte 0 Byte 1 Byte L• • • • • • •

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

•
•
•
•
•

Row N

Array 0

Byte 0 Byte 1 Byte L• • • • • • •

Row 1

Row 2

Row 3

•
•
•
•
•
•
•
•
•
•
•
•

Array 1

• • • • • • •

Byte 0 Byte 1 Byte L• • • • • • •

Row 1

Row 2

Row 3

•
•
•
•
•
•
•
•
•
•
•
•

Array M

= number of bytes in a flash row. Depends on part. Refer to the device datasheet for the details.
= 32, 64, 128, or 256 depending on part
= 1, 2, 3, or 4 depending on part
= Bootloader Portion
= Bootloadable Portion
= Reserved for Metadata

L
N
M

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 001-92648 Rev. ** Page 19 of 30

The bootloader project always occupies the bottom X flash rows. X is set so that there is enough
flash for:

 The vector table for this project, starting at address 0 (except PSoC 3), and

 The bootloader project configuration bytes, and

 The bootloader project code and data, and

 The checksum for the bootloader portion of flash
The bootloader project configuration bytes are always stored in main flash, never in ECC flash.
The relevant option is removed from the bootloader project design-wide resource file.
The bootloader application portion of flash should be protected in the Flash Protection tab of the
design-wide resource file to make it only be overwritten by downloading via JTAG / SWD.
The bootloadable project occupies flash starting at the first flash row size boundary after the
bootloader, and includes:

 The vector table for the project (except PSoC 3),

 The bootloadable project code and data, and

 64 bytes of data reserved at the very end of the last flash array to store metadata used by
both the bootloader and bootloadable.

The bootloadable project’s configuration bytes may be stored in the same manner as in a
standard project, that is, in either main flash or in ECC flash, per settings in the design-wide
resource file.

Device-specific Details

PSoC 3

In the PSoC 3, the only "exception vector" is the 3-byte instruction at address 0, which is
executed at processor reset. (The interrupt vectors are not in flash – they are supplied by the
Interrupt Controller [IC]). So at reset the PSoC 3 bootloader code simply starts executing from
flash address 0.

PSoC 5LP and PSoC 4

In the PSoC 5LP / PSoC 4 devices, a table of exception vectors must exist at address 0. (The
table is pointed to by the Vector Table Offset Register, at address 0xE000ED08, whose value is
set to 0 at reset.) The bootloader code starts immediately after this table.
The table contains the initial stack pointer (SP) value for the bootloader project, and the address
of the start of the bootloader project code. It also contains vectors for the exceptions and
interrupts to be used by the bootloader.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 20 of 30 Document Number: 001-92648 Rev. **

The bootloadable project also has its own vector table, which contains that project’s starting SP
value and first instruction address. When the transfer is complete, as part of passing control to
the bootloadable project the value in the Vector Table Offset Register is changed to the address
of the bootloadable project’s table.

Metadata Memory Map
The metadata section is a 64-byte block of flash that is used as a common area for both
bootloader and bootloadable applications. In the bootloader application, the metadata is placed
at row N-1; in case of multiapplication bootloader, the bootloadable application number 1 uses
row N-1, and application number 2 uses row N-2 to store its metadata, where N is the total
number of rows for the selected device.

Address PSoC 3 PSoC 4 / PSoC 5LP

0x00 Bootloadable Application Checksum

0x01 Reserved Bootloadable Application Start Routine Address

0x02

0x03 Bootloadable Application Start Routine
Address

0x04

0x05 Reserved Last Bootloader Row

0x06

0x07 Last Bootloader Row Reserved

0x08

0x09 Reserved Bootloadable Application Length

0x0A

0x0B Bootloadable Application Length

0x0C

0x0D Reserved

0x0E

0x0F

0x10 Active Bootloadable Application

0x11 Bootloadable Application Verification Status

0x12 Bootloader Application Version

0x13

0x14 Bootloadable Application ID

0x15

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 001-92648 Rev. ** Page 21 of 30

Address PSoC 3 PSoC 4 / PSoC 5LP

0x16 Bootloadable Application Version

0x17

0x18 Bootloadable Application Custom ID

0x19

0x1A

0x1B

0x1C- 0x3F Reserved

Name Description

Bootloadable
Application Checksum

This is the basic summation checksum that is computed by adding all the bytes of the
bootloadable application image (excluding the metadata section).

Bootloadable
Application Start
Routine Address

Startup routine address of the bootloadable application. This is STARTUP1 for PSoC 3
and Reset() for PSoC 4 / PSoC 5. The linker is free to put these anywhere it wants after
the minimum starting address of the application.

Bootloader Last Flash
Row

The number of the last flash row occupied by bootloader application image.
Note For the second bootloadable application (in the Multi-Application Bootloader case),
this field contains last flash row occupied by the first bootloadable application.

Bootloadable
Application Length

The size of the bootloadable application in bytes.

Active Bootloadable
Application

This field contains information about active bootloadable application if Multi-application
bootloader option is enabled.

Bootloadable
Application Verification
Status

This field contains the status of the bootloadable application validation when Fast
bootloadable application validation option is enabled: the bootloader only computes
the checksum the first time and assumes that it remains valid in each future startup.

Bootloader Application
Version

This field contains the application version of the bootloader application. Specified in the
bootloader component customizer.

Bootloadable
Application ID [3]

This field contains the application ID of the bootloadable application. Specified in the
bootloadable component customizer.

Bootloadable
Application Version [4]

This field contains the application version of the bootloadable application. Specified in
the bootloadable component customizer.

3 When the bootloader application is the only application in the device (no bootloadable applications are stored),

this field reports the number of images the bootloader application expects; 1 for bootloader projects, and 2 for
multi-application bootloader projects.

4 For PSoC 3/PSoC 5LP, when the bootloader application is the only application in the device, this field reports
whether ECC memory data should be included in the bootloadable application checksum.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 22 of 30 Document Number: 001-92648 Rev. **

Name Description

Bootloadable
Application Custom ID

This field contains the application custom ID of the bootloadable application. Specified in
the bootloadable component customizer.

Note All fields are stored in the endianness of the processor: big-endian for PSoC 3 and little-
endian for PSoC 4/PSoC 5LP.

PSoC Creator Project Output Files
When either project type – bootloader or bootloadable - is built, an output file is created for that
project.
In addition, an output file for both projects – a "combination" file – is created when the
bootloadable project is build. This file includes both the bootloader and bootloadable projects.
This file is typically used to facilitate downloading both projects (via JTAG / SWD) to device flash
in a production environment.
Configuration bytes for bootloadable projects may be stored in either main flash or in ECC flash.
The format of the bootloadable project output file is such that when the device has ECC bytes
which are disabled, transfer operations are executed in less time. This is done by interleaving
records in the bootloadable main flash address space with records in the ECC flash address
space. The bootloader takes advantage of this interleaved structure by programming the
associated flash row once – the row contains bytes for both main flash and ECC flash.
Each project has its own checksum. The checksums is included in the output files at project build
time.

Bootloader Packet Structure
Communication packets sent from the Host to the Bootloader have this structure:

Start of Packet
(0x01)

Command Data Length (N) N bytes of data Checksum End of Packet
(0x17)

1 Byte 1 Byte 2 Bytes N Bytes 2 Bytes 1 Byte

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 001-92648 Rev. ** Page 23 of 30

Response packets read from the Bootloader have this structure:

Start of Packet
(0x01)

Status Code Data Length (N) N bytes of data Checksum End of Packet
(0x17)

1 Byte 1 Byte 2 Bytes N Bytes 2 Bytes 1 Byte

Status/Error Codes
The possible status/error codes output from the bootloader are:

Status/Error Code Value Description

CYRET_SUCCESS 0x00 The command was successfully received and executed

BOOTLOADER_ERR_LENGTH 0x03 The amount of data available is outside the expected range

BOOTLOADER_ERR_DATA 0x04 The data is not of the proper form

BOOTLOADER_ERR_CMD 0x05 The command is not recognized

BOOTLOADER_ERR_CHECKSUM 0x08 Packet checksum does not match the expected value

BOOTLOADER_ERR_ARRAY 0x09 Flash array ID is not valid

BOOTLOADER_ERR_ROW 0x0A The flash row number is not valid

BOOTLOADER_ERR_APP 0x0C The application is not valid and cannot be set as active

BOOTLOADER_ERR_ACTIVE 0x0D The application is currently marked as active

BOOTLOADER_ERR_UNK 0x0F An unknown error occurred

Bootloader Commands
The bootloader supports these commands. All received bytes that do not start with one of the set
of command bytes is discarded with no response generated. All multi-byte fields are output LSB
first.
Note The time required for the bootloader to execute any command is based on the
configuration of the device. Some of the factors that affect the timing include:

 Clock speed at which the part is running

 Toolchain used to build the project

 Optimization settings used during the build

 Number of interrupts running in the background

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 24 of 30 Document Number: 001-92648 Rev. **

Bootloader Command Name (Command Code)

Data Byte
(bytes number)

Response
Packet Status

Code
Response Packet

Data (bytes number) Description

Enter Bootloader (0x38)

N/A Success
Error Command
Error Data
Error Length
Error Checksum

Silicon ID (4)
Silicon Rev (1)
Version (3)

The bootloader responds to this command
with the device information and version of the
Bootloader component.
Version means version of the Bootloader
component.

Get Flash Size (0x32) (optional)

Flash Array ID (1) Success
Error Command
Error Data
Error Length
Error Checksum

First available row (2)
Last available row (2)

The bootloader responds to this command
with the first full row after the bootloader
application (first row of the bootloadable
application) and last flash row in the selected
flash array:
For the flash array where the bootloader
application ends, the first full row after the
bootloader application is returned.
For the fully occupied flash array, the number
of rows in the array plus one is returned
(there is no space for the bootloadable
application in this array).
For the arrays next to the occupied array,
zero is returned (bootloadable application
can be written from their beginning).

Program Row (0x39)

Flash Array ID (1)
Flash Row Number (2)
Data to write (n)

Success
Error Command
Error Data
Error Length
Error Checksum
Error Flash Row
Error Active

N/A Writes one row of flash data to the device.
The data to be written to the flash can be
sent in multiple packets using the Send Data
command.
This command may be sent along with the
last block of data, to program the row.

Erase Row (0x34) (optional)

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 001-92648 Rev. ** Page 25 of 30

Bootloader Command Name (Command Code)

Data Byte
(bytes number)

Response
Packet Status

Code
Response Packet

Data (bytes number) Description

Flash Array ID (1)
Flash Row Number (2)

Success
Error Command
Error Data
Error Length
Error Checksum
Error Flash Row
Error Active

N/A Erases the contents of the provided flash
row.

Verify Row (0x3A) (optional)

Flash Array ID (1)
Flash Row Number (2)

Success
Error Command
Error Data
Error Length
Error Checksum

Row checksum (1) Gets a 1 byte checksum for the contents of
the provided row of flash.

Verify Checksum (0x31)

N/A Success
Error Command
Error Data
Error Length
Error Checksum

Checksum valid (1) A non-zero return value indicates that the
application code flash checksum matches the
expected value stored in flash and therefore
the application is valid.
A return value of 0 indicates that the
checksums do not match, and therefore the
application is not valid.

Send Data (0x37) (optional)

Data for Device (n) Success
Error Command
Error Data
Error Length
Error Checksum

N/A Sends a block of data to the device.
This data is buffered up in anticipation of
another command that will inform the
bootloader what to do with the data. If
multiple send data commands are issued
back-to-back, the data is appended to the
previous block.
This command is used to breakup large
transfers into smaller pieces to prevent bus
starvation in some protocols.

Sync bootloader (0x35) (optional)

N/A N/A N/A Resets the bootloader to a clean state, ready
to accept a new command.
Any data that was buffered is thrown out.
This command is only needed if the host and
client get out of sync with each other.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 26 of 30 Document Number: 001-92648 Rev. **

Bootloader Command Name (Command Code)

Data Byte
(bytes number)

Response
Packet Status

Code
Response Packet

Data (bytes number) Description

Exit Bootloader (0x3B)

N/A N/A N/A Exits from the bootloader by triggering
software reset of the device.
Before the software reset is executed, the
bootloadable application is verified. If the
application passes verification, the
application will be executed after the
software reset. If the application fails
verification, then execution will begin again
with the bootloader after the software reset.

Get Metadata (0x03C) (optional)

Application # (1) Success
Error Application
Error Length
Error Data
Error Checksum

Metadata (56) Reports first 56 bytes of the metadata for a
selected application. For more information on
metadata see Metadata section.

Get Application Status (Multi-application bootloader Only) (0x33) (optional)

Application # (1) Success
Error Length
Error Checksum
Error Data

App # Valid (1)
App # Active (1)

Returns the status of the specified
application.

Set Active Application (Multi-application bootloader Only) (0x36)

Application # (1) Success
Error Application
Error Length
Error Data
Error Checksum

N/A The specified bootloadable application is set
as active. This command is used to switch
between two bootloadable applications.

Bootloader Application and Code Data File Format
The bootloader application and code data (.cyacd) file format stores the bootloadable portion of a
design. The file is a header followed by lines of flash data. Excluding the header, each line in the
.cyacd file represents an entire row of flash data. The data is stored as ASCII data in big endian
format.
The header record has this format:

[4-byte SiliconID][1-byte SiliconRev][1-byte Checksum Type]

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 001-92648 Rev. ** Page 27 of 30

The data records have this format:
[1-byte ArrayID][2-byte RowNumber][2-byte DataLength][N-byte Data][1-byte Checksum]

The checksum type in the header indicates the type of checksum used for packets sent between
the bootloader host and the bootloader itself. The checksum in the data records is a basic
summation, computed by summing all bytes (excluding the checksum itself) and then taking the
2's complement.

Bootloader Host Tool
PSoC Creator ships with a bootloader host tool (bootloader_host.exe) that you can use to test
the bootloader running on a PSoC chip. The bootloader host tool is the application that
communicates directly with the bootloader to send new bootloadable images. The bootloader
host tool provided is only a development and testing tool.

Source Code
In addition to the host executable itself, much of the source code used is also provided. Use this
source code to create your own bootloader host applications. The source code is located in this
directory:

<Install Dir>\cybootloaderutils\

By default, this directory is:
C:\Program Files\Cypress\PSoC Creator\<Release Version>\PSoC Creator\cybootloaderutils\

This source code is broken up into four different modules. These modules provide
implementations for the various pieces of functionality required for a bootloader host. Depending
on the desired level of control, some or all of these modules can be used in developing a custom
bootloader host application.

cybtldr_command.c/h

This module handles construction of packets to send to the bootloader, and the parsing of
packets received from the bootloader. It has a single function for constructing each type of
packet that the bootloader understands, and a single function for parsing the results for each
packet the bootloader can send back.

cybtldr_parse.c/h

This module handles the parsing of the *.cyacd file that contains the bootloadable image to send
to the device. It has functions for Setting up access to the file, Reading the header, Reading the
row data, and closing the file.

cybtldr_api.c/h

This is a row level API that allows for sending a single row of data at a time to the bootloader
using a supplied communication mechanism. It has functions for setting up the bootload

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 28 of 30 Document Number: 001-92648 Rev. **

operation, programming a row, erasing a row, verifying a row, and ending the bootload
operation.

cybtldr_api2.c/h

This is a higher level API that handles the entire bootload process. It has functions for
programming the device, erasing the device, verifying the device, and aborting the current
operation.

Resources
The Bootloader and Bootloadable projects use these device resources:

 The Bootloader component uses both general purpose bits of the reset status
(RESET_SR0) register. These bits are necessary to communicate bootloader intents
across the software reset boundaries.

 The resources used by communication component are in the corresponding component
datasheet.

Component Changes
This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

1.30 Updated list of the supported communication
components.

To provide updated interface information.

Aligned diagram in the Bootloader and
Bootloadable Project Functions section with the
implementation.

Bootloadable application validation is performed
from the bootloader application before switching
to it through the software reset.

Added support for Bluetooth Low Energy devices.

Added following functions to the Bootloader
component:

uint32 Bootloader_GetMetadata(uint8 field,
uint8 appId)
cystatus
Bootloader_ValidateBootloadable(uint8 appId)
void Bootloader_Exit(uint8 appId)
uint8 Bootloader Calc8BitSum(uint32
baseAddr, uint32 start, uint32 size)

Increased functionality.

Updated Bootloader_Start() for the Multi-
Application Bootloader.

To implement the following algorithm: If active
bootloadable application is not valid, and the other
bootloadable application (inactive) is valid, the last
one is started.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 001-92648 Rev. ** Page 29 of 30

Version Description of Changes Reason for Changes / Impact

Fixed an issue when Verify Row command was
always available independently of the customizer
settings.

Ensured that the bootloader application is not
overwritten during bootloadable application
transfer.

Implemented additional verification.

The metadata flash row of the active bootloadable
application is erased before the process of
updating bootloadable application is launched
only if “Fast bootloadable application validation”
option is enabled.
The feature was added for the Multi-Application
Bootloader projects.

The metadata flash row was erased
independently of the “Fast bootloadable
application validation”.

The reason of erasing metadata flash row is to
reset “Bootloadable Application Verification
Status” field and trigger checksum computation
instead of relying on status stored in the
metadata.

Updated the Get Flash Size command
implementation.

To address incorrect reply when bootloader
application consumes more than one flash array
(its size is above 64 KB).

The flash initialization for the PSoC 3 and
PSoC 5LP devices updated to be performed only
before flash write.

The startup time (time between reset and main()
entry) significantly decreased.

1.20.a Minor datasheet edits. Added note for PSoC 4000 devices and flash.

1.20 The Wait for command time option was changed
to be in units of 100 ms instead of 10 ms units.

Note While updating to version 1.20 the Wait for
command time option value will be automatically
increased by 10 times.

Added Get Metadata command. Reports first 56 bytes of the metadata for a
selected application.

All commands (with the exception of Exit
Bootloader, and Sync Bootloader) are ignored by
Bootloader application till the Enter Bootloader
command is received.

Bootloader application waits for valid traffic
(denoted by Enter Bootloader command), but not
for any traffic.
If traffic is received but not a valid bootloader
Enter Bootloader command, then the timeout
expires at the specified time and the bootloadable
application is launched.

Updated the Dependencies tab. Added field to specify Bootloader ELF file.

Updated MISRA Compliance section. The Bootloader/Bootloadable components were
verified for MISRA compliance and have specific
deviations described.

1.10 Added MISRA Compliance section. The Bootloader/Bootloadable components were
not verified for MISRA compliance.

Added PSoC 4 device support. New device support

Minor datasheet edits

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 30 of 30 Document Number: 001-92648 Rev. **

Version Description of Changes Reason for Changes / Impact

1.0.a Datasheet corrections

1.0 Initial component version

© Cypress Semiconductor Corporation, 2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	Bootloader Component
	Bootloadable Component

	Bootloader Component Parameters
	Communication component
	Multi-application bootloader
	Wait for command
	Wait for command time
	Bootloader application version
	Packet checksum type
	Fast bootloadable application validation
	Bootloader application validation
	Optional Commands

	Bootloadable Component Parameters
	General Tab
	Application version
	Application ID
	Application custom ID
	Manual application image placement
	Placement Address

	Dependencies Tab
	Bootloader HEX file
	Bootloader ELF file

	Application Programming Interface
	Bootloader and Bootloadable Functions
	void Bootloader_Start(void)
	uint32 Bootloader_GetMetadata(uint8 field, uint8 appId)
	cystatus Bootloader_ValidateBootloadable(uint8 appId)
	void Bootloader_Exit(uint8 appId)
	uint8 Bootloader_Calc8BitSum(uint32 baseAddr, uint32 start, uint32 size)
	void Bootloadable_Load(void)

	Sample Firmware Source Code
	MISRA Compliance
	Bootloader Component Specific Deviations:
	Bootloadable Component Specific Deviations:

	API Memory Usage
	PSoC 3 (Keil_PK51)
	PSoC 4 (GCC)
	PSoC 5LP (GCC)

	Functional Description
	Definitions
	Bootloader and Bootloadable Project Functions
	Bootloader Application
	Bootloadable Application
	Export a Design to a 3rd Party IDE
	Memory Usage
	Bootloader
	Bootloadable
	Device-specific Details
	PSoC 3
	PSoC 5LP and PSoC 4

	Metadata Memory Map

	PSoC Creator Project Output Files
	Bootloader Packet Structure
	Status/Error Codes
	Bootloader Commands
	Bootloader Application and Code Data File Format
	Bootloader Host Tool
	Source Code
	cybtldr_command.c/h
	cybtldr_parse.c/h
	cybtldr_api.c/h
	cybtldr_api2.c/h

	Resources
	Component Changes

